Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Period assignment in real-time scheduling of multiple virtual machines
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
2015 (English)In: Proceedings of the 7th International Conference on Management of computational and collective intElligence in Digital EcoSystems, Association for Computing Machinery (ACM), 2015, p. 180-187Conference paper, Published paper (Refereed)
Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2015. p. 180-187
Keywords [en]
Virtualization; Real-time scheduling; Hard- deadlines; Virtual Machine scheduling; VM period assignment.
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:bth-11801DOI: 10.1145/2857218.2857262OAI: oai:DiVA.org:bth-11801DiVA, id: diva2:918796
Conference
7th International Conference on Management of computational and collective intElligence in Digital EcoSystems, Sao Paulo, Brazil
Available from: 2016-04-12 Created: 2016-04-12 Last updated: 2018-05-22Bibliographically approved
In thesis
1. Performance Aspects of Databases and Virtualized Real-time Applications
Open this publication in new window or tab >>Performance Aspects of Databases and Virtualized Real-time Applications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Context: High computing system performance depends on the interaction between software and hardware layers in modern computer systems. Two strong trends that effect different layers in computer systems are that single processors are now more or less completely replaced by multiprocessors, which are often organized into clusters, and virtualization of resources. The performance evaluation of different software on such physical and virtualized resources, is the focus of this thesis.

Objectives: The objectives of this thesis are to investigate the performance evaluation of SQL and No SQL database management systems, namely Cassandra, CouchDB, MongoDB, PostgreSQL, and RethinkDB; and soft real-time application namely, voice-driven web. Scheduling algorithms for resource allocation for hard real-time applications on virtual processor are also investigated.

Methods: Experiment is used to measure the performance of SQL and No SQL management systems on cluster. It is also used to develop a prototype and predicts processor performance of voice-driven web on multiprocessors. Theoretical methods are used to model and design algorithms to schedule real-time applications on the virtual processor machine. Simulation is used to quantify the performance implications of certain parameter values in our theoretical results and to compare expected performance with theoretical bounds in our schedulability tests.

Results:The performance of Cassandra, CouchDB, MongoDB, 2

PostgreSQL, and RethinkDB is evaluated in terms of writing and reading throughput and latencies in cluster computing. For reading throughput, all database systems are horizontally scalable as the cluster’s nodes number increases, however, only Cassandra and couchDB exhibit scalability for data writing. The overall evaluation shows that Cassandra has the most writing scalable throughput as the number of nodes increases with a relative low latency, whereas PostgreSQL has the lowest writing latency, and MongoDB has the lowest reading latency.

The architectures’ tradeoffs of voice-driven web show that the voice engine should be installed on the server instead of being on the mobile device, and performance evaluations show that speech engine scales with respect to the number of cores in the multiprocessor with and without hyperthreading.

The thesis presents scheduling techniques for real-time applications that runs in virtual machines which are time sharing the processor. Each virtual machine’s period and execution time that allow real-time applications to meet their deadlines can be defined using these techniques. Simulation results show the impact of the length of different VM periods with respect to overhead. The tradeoffs between resources consumption and period length are also given. Furthermore, a utilization based test for scheduling real-time application on virtual multiprocessor is presented. This test determines if a task set is schedulable or not. If the task set is schedulable the algorithm provides the priority for each task. This algorithm avoids Dhall’s effect, which may cause task sets with even very low utilization to miss deadlines.

Conclusions: The thesis presented the performance evaluation of reading and writing throughput and latencies for SLQ and NoSQL management systems in the cluster computing. The thesis quantifies the tradeoffs of voice-driven web architectures and the performance scalability of the speech engine with respect to number of cores of the multiprocessor. Furthermore, this thesis proposes scheduling algorithms for real-time 3

application with hard deadline on virtual processors, either as a single core processor or as a multicore processor.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2018. p. 36
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 02
Keywords
SLQ and NoSQL database, Bigdata management systems, Structured and non-structured Database Evaluation, Voice-driven web, Multicore performance prediction, Hard real-time Scheduling, Virtual Multiprocessor Scheduling
National Category
Computer Sciences
Identifiers
urn:nbn:se:bth-15758 (URN)978-91-7295-348-2 (ISBN)
Public defence
2018-09-21, J1650, Blekinge Tekniska Högskola, 371 79 Karlskrona, Karlskrona, 13:00 (English)
Opponent
Supervisors
Funder
Sida - Swedish International Development Cooperation Agency
Available from: 2018-01-15 Created: 2018-01-14 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPeriod assignment in real-time scheduling of multiple virtual machines

Authority records BETA

Niyizamwiyitira, ChristineLundberg, Lars

Search in DiVA

By author/editor
Niyizamwiyitira, ChristineLundberg, Lars
By organisation
Department of Computer Science and Engineering
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 56 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf