Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using the fingerprinting method to customize RTLS based on the AoA ranging technique
Blekinge Institute of Technology, Faculty of Engineering, Department of Applied Signal Processing.
2016 (English)In: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 16, no 6, article id 876Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Real-time Locating Systems (RTLSs) have the ability to precisely locate the position of things and people in real time. They are needed for security and emergency applications, but also for healthcare and home care appliances. The research aims for developing an analytical method to customize RTLSs, in order to improve localization performance in terms of precision. The proposed method is based on Angle of Arrival (AoA), a ranging technique and fingerprinting method along with an analytically defined uncertainty of AoA, and a localization uncertainty map. The presented solution includes three main concerns: geometry of indoor space, RTLS arrangement, and a statistical approach to localization precision of a pair of location sensors using an AoA signal. An evaluation of the implementation of the customized RTLS validates the analytical model of the fingerprinting map. The results of simulations and physical experiments verify the proposed method. The research confirms that the analytically established fingerprint map is the valid representation of RTLS’ performance in terms of precision. Furthermore, the research demonstrates an impact of workspace geometry and workspace layout onto the RTLS’ performance. Moreover, the studies show how the size and shape of a workspace and the placement of the calibration point affect the fingerprint map. Withal, the performance investigation defines the most effective arrangement of location sensors and its influence on localization precision. © 2016 by the authors; licensee MDPI, Basel, Switzerland.

Place, publisher, year, edition, pages
MDPI AG , 2016. Vol. 16, no 6, article id 876
Keywords [en]
Calibration; Direction of arrival; Location, Accuracy and precision; Angle of arrival; Calibration points; Fingerprinting methods; Indoor localization systems; Real-Time Locating Systems, Real time systems
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:bth-12778DOI: 10.3390/s16060876ISI: 000378756500124Scopus ID: 2-s2.0-84974803245OAI: oai:DiVA.org:bth-12778DiVA, id: diva2:944867
Available from: 2016-06-30 Created: 2016-06-30 Last updated: 2019-03-28Bibliographically approved
In thesis
1. Real-time Locating Systems for indoor applications: the methodological customization approach
Open this publication in new window or tab >>Real-time Locating Systems for indoor applications: the methodological customization approach
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Emerging wireless technologies increase the potential and effectiveness of wireless Real-time Locating Systems (RTLSs), which precisely localize the position, and identify things and people in real time. Among many applications, RTLSs are widely used in the industrial sector for indoor logistics and safety applications. However, signal interferences, which affect the system’s performance, are a serious issue of all indoor RTLS applications. Among others, the interferences are caused by the changeable working environment, the geometry and structure of the space, furnishing, and other obstacles. A customization of the RTLS’s architecture and localization algorithm may provide a way to overcome the interference problem and then enhance the systems’ performance.

The objective of this thesis is to develop and implement customization methods, which enhance system performance in the changeable working environment without compromising the functional and non-functional requirements defined by future users and stakeholders. The customized solution is to be based on the comprehensive methodological analysis of the system’s technical and environmental constraints, along with the requirements specified by the application field. The customization process covers the selection, adjustment and adaptation of the wireless technologies and methods in order to enhance the location system’s performance, in terms of accuracy and precision without compromising its simplicity and price.

In this research, wireless technologies of Radio Frequency Identification (RFID) and Ultra-wideband (UWB) are applied. The related indoor localization methods, such as, ranging techniques based on Received Signal Strength (RSS) and Angle of Arrival (AoA), are a thesis focus. Moreover, estimation methods like Fingerprinting and Angulation are used.

One of the proposed customization methods of RFID-based 3D RTLS, refers to the heuristic analysis-based optimization of a number and configuration of readers. For the same type of system, an alternative way of performance improvement is a customization of localization algorithm, explicitly the Neural Network-based estimation algorithm and its structural features and training methods.

Also in this thesis, performance improvement methods of the AoA-based RTLS operating in an UWB technology are proposed. The proposed customization of this system type is based on the uncertainty pattern defined by a statistical uncertainty model, which maps the localization uncertainty in terms of precision in the 2D workspace. The model depicts how the localization uncertainty depends on an arrangement of Location Sensors and workspace geometry. Another proposed customization method is realized by defining and implementing correction vectors for different working environments, which enhance the system’s performance in terms of its accuracy.

This thesis consists of two parts. Part I, Prolegomena, presents the overview of applied theories and research methods. This part aims to illustrate the links between the articles constituting the second part of the dissertation. Part II, Papers consists of five reformatted papers already published in peer reviewed journals and conferences.

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2019. p. 204
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 08
Keywords
Accuracy and Precision, Angle of Arrival, Fingerprinting Method, Indoor Localization, Indoor Positioning System, Multi-Sensor System, Neural Network, Radio Frequency Identification - RFID, Real Time Locating System, Received Signal Strength, RFID Network Planning, Scene Analysis, Sensors Arrangement, System Customization, Uncertainty, Uncertainty Map, User Driven Design
National Category
Signal Processing
Identifiers
urn:nbn:se:bth-17740 (URN)978-91-7295-373-4 (ISBN)
Public defence
2019-05-03, J1650, Blekinge Tekniska Högskola, Campus Gräsvik, Karlskrona, 13:15 (English)
Opponent
Supervisors
Available from: 2019-03-28 Created: 2019-03-25 Last updated: 2019-06-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kulesza, Wlodek

Search in DiVA

By author/editor
Kulesza, Wlodek
By organisation
Department of Applied Signal Processing
In the same journal
Sensors
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 137 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf