Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boldt, Martin
    et al.
    Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
    Borg, Anton
    Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science.
    Ickin, Selim
    Ericsson Research, SWE.
    Gustafsson, Jörgen
    Ericsson Research, SWE.
    Anomaly detection of event sequences using multiple temporal resolutions and Markov chains2019In: Knowledge and Information Systems, ISSN 0219-1377, E-ISSN 0219-3116Article in journal (Refereed)
    Abstract [en]

    Streaming data services, such as video-on-demand, are getting increasingly more popular, and they are expected to account for more than 80% of all Internet traffic in 2020. In this context, it is important for streaming service providers to detect deviations in service requests due to issues or changing end-user behaviors in order to ensure that end-users experience high quality in the provided service. Therefore, in this study we investigate to what extent sequence-based Markov models can be used for anomaly detection by means of the end-users’ control sequences in the video streams, i.e., event sequences such as play, pause, resume and stop. This anomaly detection approach is further investigated over three different temporal resolutions in the data, more specifically: 1 h, 1 day and 3 days. The proposed anomaly detection approach supports anomaly detection in ongoing streaming sessions as it recalculates the probability for a specific session to be anomalous for each new streaming control event that is received. Two experiments are used for measuring the potential of the approach, which gives promising results in terms of precision, recall, F 1 -score and Jaccard index when compared to k-means clustering of the sessions. © 2019, The Author(s).

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf