Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andreasson, Eskil
    et al.
    Blekinge Institute of Technology, School of Engineering, Department of Mechanical Engineering.
    Kao-Walter, Sharon
    Blekinge Institute of Technology, School of Engineering, Department of Mechanical Engineering.
    Ståhle, Per
    Micro-mechanisms of a laminated packaging material during fracture2014In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, Vol. 127Article in journal (Refereed)
    Abstract [en]

    The micro-mechanisms of fracture in a laminate composed of an aluminium foil and a polymer film are considered in this study. The laminates as well as the individual layers, with and without premade centre-cracks, were tensile tested. Visual inspection of the broken cross-sections shows that failure occurs through localised plasticity. This leads to a decreasing and eventually vanishing cross-section ahead of the crack tip for both the laminate and their single constituent layers. Experimental results are examined and analysed using a slip-line theory to derive the work of failure. An accurate prediction was made for the aluminium foil and for the laminate but not for the freestanding polymer film. The reason seems to be that the polymer material switches to non-localised plastic deformation with significant strain-hardening.

  • 2.
    Kroon, Martin
    et al.
    Linné universitetet, SWE.
    Andreasson, Eskil
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
    Petersson, Viktor
    Tetra Pak AB, SWE.
    Olsson, Pär
    Malmö Högskola.
    Experimental and numerical assessment of the work of fracture in injection-moulded low-density polyethylene2018In: Engineering Fracture Mechanics, ISSN 0013-7944, E-ISSN 1873-7315, ISSN 0013-7944, Vol. 192, p. 1-11Article in journal (Refereed)
    Abstract [en]

    The fracture mechanics properties of injection-moulded low-density polyethylene (LDPE) sheets were investigated both experimentally and numerically. The total work of fracture was determined experimentally, by means of fracture mechanics testing of sheets of injection-moulded LDPE with side cracks of different lengths. A multi-specimen method, proposed by Kim and Joe (1987), was employed. The total work of fracture was estimated to 13 kJ/m2. The experiments were simulated numerically using the finite element method. Crack growth was enabled by inclusion of a cohesive zone, and the constitutive response of this zone was governed by a traction-separation law. The local (or essential) work of fracture was estimated through numerical analyses, where the initiation of crack growth was simulated and the outcome was compared to the experimental results. The local (i.e. essential) work of fracture was estimated to 1.7 kJ/m2, which is consistent with previous experimental measurements for the material in question. The total work of fracture, retrieved from the present experiments, agreed well with the far field values of the J-integral in the numerical analyses. © 2018 The Authors

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf