Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Barbosa, V.L.
    et al.
    E.R., Schlosser
    Machado, Renato
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
    F. G., Ferreira
    S. M., Tolfo
    M. V. T., Heckler
    Linear Array Design with Switched Beams for Wireless Communications Systems2015In: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, Vol. 2015, article id 278160Article in journal (Refereed)
  • 2.
    Björklund, Svante
    et al.
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
    Grahn, Per
    Nelander, Anders
    Pettersson, Mats
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
    Measurement of Rank and Other Properties of Direct and Scattered Signals2016In: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, Vol. 2016, article id 5483547Article in journal (Refereed)
    Abstract [en]

    We have designed an experiment for low-cost indoor measurements of rank and other properties of direct and scattered signals with radar interference suppression in mind. The signal rank is important also in many other applications, for example, DOA (Direction of Arrival) estimation, estimation of the number of and location of transmitters in electronic warfare, and increasing the capacity in wireless communications. In real radar applications, such measurements can be very expensive, for example, involving airborne radars with array antennas. We have performed the measurements in an anechoic chamber with several transmitters, a receiving array antenna, and a moving reflector. Our experiment takes several aspects into account: transmitted signals with different correlation, decorrelation of the signals during the acquisition interval, covariance matrix estimation, noise eigenvalue spread, calibration, near-field compensation, scattering in a rough surface, and good control of the influencing factors. With our measurements we have observed rank, DOA spectrum, and eigenpatterns of direct and scattered signals. The agreement of our measured properties with theoretic and simulated results in the literature shows that our experiment is realistic and sound. The detailed description of our experiment could serve as help for conducting other well-controlled experiments. © Copyright 2016 Svante Björklund et al.

  • 3. Hult, Tommy
    et al.
    Mohammed, Abbas
    The Effect of Mutual Coupling on a High Altitude Platform Diversity System Using Compact Antenna Arrays2010In: International Journal of Antennas and Propagation, ISSN 1687-5869, E-ISSN 1687-5877, Vol. 2010Article in journal (Refereed)
    Abstract [en]

    We analyze the destructive effects of mutual coupling and spatial correlation between the separate antenna elements on a combined diversity system consisting of multiple HAPs (High-Altitude Platforms) employing various compact MIMO (Multiple-Input Multiple-Output) antenna array configurations, in order to enhance the mutual information in HAP communication links. In addition, we assess the influence of the separation angle between HAPs on system performance, and determine the optimal separation angles that maximize the total mutual information of the system for various compact MIMO antennas. Simulation results show that although the mutual information is degraded by mutual coupling and spatial correlation, the proposed HAP diversity system still provides better performance compared to a nondiversity system for all tested scenarios.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf