Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ibragimov, Nail
    et al.
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences.
    Gainetdinova, Aliya
    Ufimskij Gosudarstvennyj Aviacionnyj Tehniceskij Universitet, RUS.
    Three-dimensional dynamical systems with four-dimensional vessiot-guldberg-lie algebras2017In: The Journal of Applied Analysis and Computation, ISSN 2156-907X, E-ISSN 2158-5644, Vol. 7, no 3, p. 872-883Article in journal (Refereed)
    Abstract [en]

    - Dynamical systems attract much attention due to their wide applications. Many significant results have been obtained in this field from various points of view. The present paper is devoted to an algebraic method of integration of three-dimensional nonlinear time dependent dynamical systems admitting nonlinear superposition with four-dimensional Vessiot-Guldberg-Lie algebras L4. The invariance of the relation between a dynamical system admitting nonlinear superposition and its Vessiot-Guldberg-Lie algebra is the core of the integration method. It allows to simplify the dynamical systems in question by reducing them to standard forms. We reduce the three-dimensional dynamical systems with four-dimensional Vessiot-Guldberg-Lie algebras to 98 standard types and show that 86 of them are integrable by quadratures.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf