Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chen, Hao
    et al.
    Kunming University of Science & Technology, CHI.
    Li, Xuechao
    Kunming University of Science & Technology, CHI.
    Wan, Rundong
    Kunming University of Science & Technology, CHI.
    Kao-Walter, Sharon
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
    Lei, Ying
    Anhui University of Technology, CHI.
    Leng, Chongyan
    Kunming University of Science & Technology, CHI.
    A DFT study on modification mechanism of (N,S) interstitial co-doped rutile TiO22018In: Chemical Physics Letters, ISSN 0009-2614, E-ISSN 1873-4448, Vol. 695, p. 8-18Article in journal (Refereed)
    Abstract [en]

    To obtain a more efficient (N,S) co-doping scheme, we systematically analyze the geometrical parameters, density of states, charge densities, relative dielectric functions and UV–Vis absorption spectra for pure, N/S substitution/interstitial doped and (N,S) substitution/interstitial co-doped TiO2 by using density functional calculations. Compared with (N,S) substitution co-doping, (N,S) interstitial co-doping TiO2 exhibits a more obvious red-shift of absorption edge, because of the band gap is further reduced. Furthermore, there are shallow impurity levels coupling with the top of valence band. The calculated UV–Vis absorption spectra illustrate that (N,S) interstitial co-doping TiO2 has much higher photocatalytic activity in the visible light region. © 2018

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf