Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Gosson, Maurice de
    On the notion of phase in mechanics2004In: Journal of Physics A: Mathematical and General, ISSN 0305-4470, E-ISSN 1361-6447, p. 7297-7314Article in journal (Refereed)
    Abstract [en]

    The notion of phase plays an essential role in both semiclassical and quantum mechanics. But what is exactly a phase, and how does it change with time? It turns out that the most universal definition of a phase can be given in terms of Lagrangian manifolds by exploiting the properties of the Poincare-Cartan form. Such a phase is defined, not in configuration space, but rather in phase-space and is thus insensitive to the appearance of caustics. Surprisingly enough, this approach allows us to recover the Heisenberg-Weyl formalism without invoking commutation relations for observables.

  • 2. Gosson, Maurice de
    et al.
    Gosson, Serge de
    The Maslov Index of Periodic Hamiltonian Orbits2003In: Journal of Physics A: Mathematical and General, ISSN 0305-4470, E-ISSN 1361-6447, Vol. 36, no 48, p. 615-622Article in journal (Refereed)
    Abstract [en]

    we study the Maslov index of the monodromy matrix of periodic Hamiltonian orbit, extending substantially results of other authors

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf