Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Gosson, Maurice de
    The Optimal Pure Gaussian State Canonically Associated to a Gaussian Quantum State2004In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 330, no 3-4, p. 161-167Article in journal (Refereed)
    Abstract [en]

    We show, using the symplectically invariant notion of 'quantum blob', that it is possible to attach a canonical optimal Gaussian pure state to an arbitrary quantum state. When at least one pair of conjugate variables satisfies the minimum uncertainty condition, then the associated Gaussian is uniquely determined up to an overall phase factor. (C) 2004 Elsevier B.V. All rights reserved

  • 2. Ibragimov, Nail H.
    et al.
    Ibragimov, Ranis
    Integration by quadratures of the nonlinear Euler equations modeling atmospheric flows in a thin rotating spherical shell2011In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 375, no 44, p. 3858-3865Article in journal (Refereed)
    Abstract [en]

    We study the nonlinear incompressible non-viscous fluid flows within a thin rotating atmospheric shell that serve as a simple mathematical description of an atmospheric circulation caused by the temperature difference between the equator and the poles. The model is also superimposed by a particular stationary flow which, under the assumption of no friction and a distribution of temperature dependent only upon latitude, models the zonal west-to-east flows in the upper atmosphere between the Ferrel and Polar cells. Owing to the Coriolis effects, the resulting achievable meteorological flows correspond to the asymptotical stable flows that are being translated along the equatorial plane. The exact solutions in terms of elementary functions are found by using Lie group methods.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf