Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Westphal, Florian
    et al.
    Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
    Grahn, Håkan
    Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
    Lavesson, Niklas
    Blekinge Institute of Technology, Faculty of Computing, Department of Computer Science and Engineering.
    Efficient document image binarization using heterogeneous computing and parameter tuning2018In: International Journal on Document Analysis and Recognition, ISSN 1433-2833, E-ISSN 1433-2825, Vol. 21, no 1-2, p. 41-58Article in journal (Refereed)
    Abstract [en]

    In the context of historical document analysis, image binarization is a first important step, which separates foreground from background, despite common image degradations, such as faded ink, stains, or bleed-through. Fast binarization has great significance when analyzing vast archives of document images, since even small inefficiencies can quickly accumulate to years of wasted execution time. Therefore, efficient binarization is especially relevant to companies and government institutions, who want to analyze their large collections of document images. The main challenge with this is to speed up the execution performance without affecting the binarization performance. We modify a state-of-the-art binarization algorithm and achieve on average a 3.5 times faster execution performance by correctly mapping this algorithm to a heterogeneous platform, consisting of a CPU and a GPU. Our proposed parameter tuning algorithm additionally improves the execution time for parameter tuning by a factor of 1.7, compared to previous parameter tuning algorithms. We see that for the chosen algorithm, machine learning-based parameter tuning improves the execution performance more than heterogeneous computing, when comparing absolute execution times. © 2018 The Author(s)

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf