Ändra sökning
Avgränsa sökresultatet
1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Westphal, Florian
    et al.
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Grahn, Håkan
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Lavesson, Niklas
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Efficient document image binarization using heterogeneous computing and parameter tuning2018Ingår i: International Journal on Document Analysis and Recognition, ISSN 1433-2833, E-ISSN 1433-2825, Vol. 21, nr 1-2, s. 41-58Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the context of historical document analysis, image binarization is a first important step, which separates foreground from background, despite common image degradations, such as faded ink, stains, or bleed-through. Fast binarization has great significance when analyzing vast archives of document images, since even small inefficiencies can quickly accumulate to years of wasted execution time. Therefore, efficient binarization is especially relevant to companies and government institutions, who want to analyze their large collections of document images. The main challenge with this is to speed up the execution performance without affecting the binarization performance. We modify a state-of-the-art binarization algorithm and achieve on average a 3.5 times faster execution performance by correctly mapping this algorithm to a heterogeneous platform, consisting of a CPU and a GPU. Our proposed parameter tuning algorithm additionally improves the execution time for parameter tuning by a factor of 1.7, compared to previous parameter tuning algorithms. We see that for the chosen algorithm, machine learning-based parameter tuning improves the execution performance more than heterogeneous computing, when comparing absolute execution times. © 2018 The Author(s)

1 - 1 av 1
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf