Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Aspvall, Bengt
    et al.
    Halldorsson, MM
    Manne, F
    Approximations for the general block distribution of a matrix2001In: Theoretical Computer Science, ISSN 0304-3975, E-ISSN 1879-2294, Vol. 262, no 1-2, p. 145-160Article in journal (Refereed)
    Abstract [en]

    The general block distribution of a matrix is a rectilinear partition of the matrix into orthogonal blocks such that the maximum sum of the elements within a single block is minimized. This corresponds to partitioning the matrix onto parallel processors so as to minimize processor load while maintaining regular communication patterns. Applications of the problem include various parallel sparse matrix computations, compilers for high-performance languages, particle in cell computations, video and image compression, and simulations associated with a communication network. We analyze the performance guarantee of a natural and practical heuristic based on iterative refinement, which has previously been shown to give good empirical results. When p2 is the number of blocks, we show that the tight performance ratio is Theta(rootp). When the matrix has rows of large cost, the details of the objective function of the algorithm are shown to be important, since a naive implementation can lead to a Ohm (p) performance ratio. Extensions to more general cost functions, higher-dimensional arrays, and randomized initial configurations are also considered. (C) 2001 Elsevier Science B.V. All rights reserved.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf