Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Siddiqui, Rafid
    et al.
    Blekinge Institute of Technology, School of Computing.
    Havaei, Mohammad
    Siamak, Khatibi
    Blekinge Institute of Technology, School of Computing.
    Lindley, Craig
    Blekinge Institute of Technology, School of Computing.
    A novel plane extraction approach using supervised learning2013In: Machine Vision and Applications, ISSN 0932-8092, E-ISSN 1432-1769, Vol. 24, no 6, p. 1229-1237Article in journal (Refereed)
    Abstract [en]

    This paper presents a novel approach for the classification of planar surfaces in an unorganized point clouds. A feature-based planner surface detection method is proposed which classifies a point cloud data into planar and non-planar points by learning a classification model from an example set of planes. The algorithm performs segmentation of the scene by applying a graph partitioning approach with improved representation of association among graph nodes. The planarity estimation of the points in a scene segment is then achieved by classifying input points as planar points which satisfy planarity constraint imposed by the learned model. The resultant planes have potential application in solving simultaneous localization and mapping problem for navigation of an unmanned-air vehicle. The proposed method is validated on real and synthetic scenes. The real data consist of five datasets recorded by capturing three-dimensional(3D) point clouds when a RGBD camera is moved in five different indoor scenes. A set of synthetic 3D scenes are constructed containing planar and non-planar structures. The synthetic data are contaminated with Gaussian and random structure noise. The results of the empirical evaluation on both the real and the simulated data suggest that the method provides a generalized solution for plane detection even in the presence of the noise and non-planar objects in the scene. Furthermore, a comparative study has been performed between multiple plane extraction methods.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf