Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Nystedt, Patrik
    et al.
    Högskolan Väst, SWE.
    Öinert, Johan
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mathematics and Natural Sciences. Blekinge Inst Technol, Dept Math & Nat Sci, SE-37179 Karlskrona, Sweden..
    Richter, Johan
    Mälardalens högskola, SWE.
    NON-ASSOCIATIVE ORE EXTENSIONS2018In: Israel Journal of Mathematics, ISSN 0021-2172, E-ISSN 1565-8511, Vol. 224, no 1, p. 263-292Article in journal (Refereed)
    Abstract [en]

    We introduce non-associative Ore extensions, S = R[X; sigma, delta], for any non-ssociative unital ring R and any additive maps sigma, delta : R -> R satisfying sigma(1) = 1 and delta(1) = 0. In the special case when delta is either left or right R-delta-linear, where R-delta = ker(delta), and R is delta-simple, i.e. {0} and R are the only delta-invariant ideals of R, we determine the ideal structure of the non-associative differential polynomial ring D = R[X; id(R),delta]. Namely, in that case, we show that all non-zero ideals of D are generated by monic polynomials in the center Z(D) of D. We also show that Z(D) = R-delta[p] for a monic p is an element of R-delta [X], unique up to addition of elements from Z(R)(delta) . Thereby, we generalize classical results by Amitsur on differential polynomial rings defined by derivations on associative and simple rings. Furthermore, we use the ideal structure of D to show that D is simple if and only if R is delta-simple and Z(D) equals the field R-delta boolean AND Z(R). This provides us with a non-associative generalization of a result by Oinert, Richter and Silve-strov. This result is in turn used to show a non-associative version of a classical result by Jordan concerning simplicity of D in the cases when the characteristic of the field R-delta boolean AND Z(R) is either zero or a prime. We use our findings to show simplicity results for both non-associative versions of Weyl algebras and non-associative differential polynomial rings defined by monoid/group actions on compact Hausdorff spaces.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf