Endre søk
Begrens søket
1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Nystedt, Patrik
    et al.
    University West, Sweden.
    Öinert, Johan
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Simple graded rings, non-associative crossed products and Cayley-Dickson doublings2019Inngår i: Journal of Algebra and its Applications, ISSN 0219-4988, E-ISSN 1793-6829, artikkel-id 2050231Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We show that if a non-associative unital ring is graded by a hypercentral group, then the ring is simple if and only if it is graded simple and the center of the ring is a field. Thereby, we extend a result by Jespers from the associative case to the non-associative situation. By applying this result to non-associative crossed products, we obtain non-associative analogues of results by Bell, Jordan and Voskoglou. We also apply this result to Cayley-Dickson doublings, thereby obtaining a new proof of a classical result by McCrimmon.

  • 2.
    Nystedt, Patrik
    et al.
    University West, SWE.
    Öinert, Johan
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Pinedo, Héctor
    Industrial University of Santander, COL.
    Artinian and noetherian partial skew groupoid rings2018Inngår i: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 503, s. 433-452Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Let α={α_g : R_{g^{−1}}→R_g}_{g∈mor(G)} be a partial action of a groupoid G on a (not necessarily associative) ring R and let S=R⋆G be the associated partial skew groupoid ring. We show that if α is global and unital, then S is left (right) artinian if and only if R is left (right) artinian and R_g={0}, for all but finitely many g∈mor(G). We use this result to prove that if α is unital and R is alternative, then S is left (right) artinian if and only if R is left (right) artinian and R_g={0}, for all but finitely many g∈mor(G). This result applies to partial skew group rings, in particular. Both of the above results generalize a theorem by J. K. Park for classical skew group rings, i.e. the case when R is unital and associative, and G is a group which acts globally on R. We provide two additional applications of our main results. Firstly, we generalize I. G. Connell's classical result for group rings by giving a characterization of artinian (not necessarily associative) groupoid rings. This result is in turn applied to partial group algebras. Secondly, we give a characterization of artinian Leavitt path algebras. At the end of the article, we relate noetherian and artinian properties of partial skew groupoid rings to those of global skew groupoid rings, as well as establish two Maschke-type results, thereby generalizing results by M. Ferrero and J. Lazzarin for partial skew group rings to the case of partial skew groupoid rings.

  • 3.
    Nystedt, Patrik
    et al.
    University West, SWE.
    Öinert, Johan
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Pinedo, Héctor
    Industrial University of Santander, COL.
    Epsilon-strongly graded rings, separability and semisimplicity2018Inngår i: Journal of Algebra, ISSN 0021-8693, E-ISSN 1090-266X, Vol. 514, nr Nov., s. 1-24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We introduce the class of epsilon-strongly graded rings and show that it properly contains both the collection of strongly graded rings and the family of unital partial crossed products. We determine when epsilon-strongly graded rings are separable over their principal components. Thereby, we simultaneously generalize a result for strongly group-graded rings by Nastasescu, Van den Bergh and Van Oystaeyen, and a result for unital partial crossed products by Bagio, Lazzarin and Paques. We also show that the family of unital partial crossed products appear in the class of epsilon-strongly graded rings in a fashion similar to how the classical crossed products present themselves in the family of strongly graded rings. Thereby, we obtain, in the special case of unital partial crossed products, a short proof of a general result by Dokuchaev, Exel and Simon concerning when graded rings can be presented as partial crossed products.

1 - 3 of 3
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf