Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Gomes, Natanael Rodrigues
    et al.
    Federal University of Santa Maria, BRA.
    Dammert, Patrik
    Saab Surveillance AB, SWE.
    Pettersson, Mats
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Vu, Viet Thuy
    Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.
    Hellsten, Hans
    Saab Surveillance AB, SWE.
    Comparison of the Rayleigh and K-Distributions for Application in Incoherent Change Detection2019Inngår i: IEEE Geoscience and Remote Sensing Letters, ISSN 1545-598X, E-ISSN 1558-0571, Vol. 16, s. 756-760Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The aim of this letter is to compare two incoherent change-detection algorithms for target detection in low-frequency ultrawideband (UWB) synthetic aperture radar (SAR) images. The considered UWB SAR operates in the frequency range from 20 to 90 MHz. Both approaches employ a likelihood ratio test according to the Neyman–Pearson criterion. First, the bivariate Rayleigh probability distribution is used to implement the likelihood ratio test function. This distribution is well known and has been used for change-detection algorithms in low-frequency UWB SAR with good results. Aiming to minimize the false alarm rate and taking into consideration that low-frequency UWB SAR images have high resolution compared to the transmitted wavelength, the second approach implements the test by using a bivariate K-distribution. This distribution has scale and shape parameters that can be used to adjust it to the data. No filter is applied to the data set images, and the results show that with a good statistical model, it is not needed to rely on filtering the data to decrease the number of false alarms. Therefore, we can have a better tradeoff between resolution and detection performance.

    Fulltekst (pdf)
    fulltext
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf