Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Leon, Armando
    et al.
    Blekinge Institute of Technology, School of Engineering, Department of Mechanical Engineering.
    Ahlin, Kjell
    Blekinge Institute of Technology, School of Engineering, Department of Mechanical Engineering.
    Kao-Walter, Sharon
    Blekinge Institute of Technology, School of Engineering, Department of Mechanical Engineering.
    On Determining Instability Conditions for Stay Cables Subjected to Parametric Resonance2009Conference paper (Other academic)
    Abstract [en]

    Parametric Resonance Vibration in cables of cable-stayed bridges is mainly studied when the excitation frequency is close to or twice the cable natural frequency. It is, however, important to consider other cases for this frequency relationship, since among other factors, cable-parametric resonance vibrations are strongly depending on the displacement amplitude at the cable supports. Consequently, the present research work is focused on determining, by experimental and numerical analysis, the instability conditions for stay cables subjected to parametric resonance within a wide range of frequency ratios. This is accomplished, by finding the minimum displacement required at the cable supports in order to induce non-linear vibration of considerable amplitude at the cable. Once the cable characteristics (geometry, material properties, inherent damping and initial tensile preload) are known, the instability conditions are identified and expressed in a simplified and practical way in a diagram. Numerical results are compared to those obtained by experimental analysis carried out on a simplified scaled model (1:200) of the Öresund Bridge. A good agreement between numerical and experimental results is found.

    Download full text (pdf)
    fulltext
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf