Modern vehicles are to a large extent connected today, either directly by built-in navigation systems in the vehicles or indirectly by other devices such as mobile phones and GPS units. This enables the possibility to continuously collect traffic data in a cost-effective way. The increased access to detailed data allows practitioners and researchers to analyze the transportation system from various perspectives. The travel speed is a common descriptor of the traffic state, and it can be extracted from GPS data. By analyzing how the travel speed vary over time and detect anomalies among the measured travel speeds, it is possible to detect potential deficiencies in the transportation system, e.g., insufficient road capacity which may cause bottlenecks. Often, a weakness in the infrastructure is detected in a very late stage which means that extensive investments may be required to resolve the deficiency.
The purpose of the pilot study is to develop methods and models to detect deficiency in the transportation system and to identity travel speeds that deviates from the normal state, i.e., travel speeds that are considered as very low or very high with respect to the normal behavior. Thus, the starting point of the pilot study is to find appropriate ways to model the traffic state along the studied road segments by using measured travel speeds from a general point of view. Analysis of the traffic state allows the study of how the normal state of the road segments change of time to detect deficiency related to road capacity and road access which may occur if no changes are made, or to detect road segments where the normal state is unchanged.
Typically, slower travel speeds may be an indicator of that a deficiency along a road segment exists. Thus, we present a method to systematically partition measured travel speeds in low, normal, and high travel speeds. The method is robust and enable the possibility to compare different road segment with different attributes, such as number of lanes and free-flow travel speed, with each other. Furthermore, we present a new measurement to describe how the low travel speeds relates to the free flow travel speed, e.g., the speed limit. Existing measurements and indicators used today utilize travel speeds which range from low to high. Our proposed measurement uses low travel speed and free flow travel speed exclusively and aims to quantify the accessibility and condition of a road segment.
The pilot study also includes an initial attempt to apply cluster analysis to detect recurrent patterns along the studied road segments. Cluster analysis is in several contexts an effective method to group time series to detect recurrent patterns among the speed profiles. The purpose of using cluster analysis is to evaluate if speed profiles with similar behavior is related to, for instance, weekday or time of the day. Thus, cluster analysis may be used to detect road segments with recurring low travel speeds, and potentially be used to forecast when congestion or queues may occur.
The pilot study is mainly limited to travel speed data. The proposed methods and models show that it is possibly to solely use travel speed data to detect deficiencies in the transportation system. In particular, the pilot study shows the potential to detect deficiencies in the transportation system without additional data sources such as link flow data.