Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chunduri, Annapurna
    et al.
    Blekinge Institute of Technology, Faculty of Computing, Department of Software Engineering.
    Feldt, Robert
    Blekinge Institute of Technology, Faculty of Computing, Department of Software Engineering.
    Adenmark, Mikael
    Scania AB, SWE.
    An effective verification strategy for testing distributed automotive embedded software functions: A case study2016In: Lecture Notes in Computer Science / [ed] Amasaki S.,Mikkonen T.,Felderer M.,Abrahamsson P.,Duc A.N.,Jedlitschka A., 2016, p. 233-248Conference paper (Refereed)
    Abstract [en]

    Integration testing of automotive embedded software functions that are distributed across several Electronic Control Unit (ECU) system software modules is a complex and challenging task in today’s automotive industry. They neither have infinite resources, nor have the time to carry out exhaustive testing of these functions. On the other hand, the traditional approach of implementing an ad-hoc selection of test scenarios based on the testers’ experience typically leads to both test gaps and test redundancies. Here, we address this challenge by proposing a verification strategy that enhances the process in order to identify and mitigate such gaps and redundancies in automotive system software testing. This helps increase test coverage by taking more data-driven decisions for integration testing of the functions. The strategy was developed in a case study at a Swedish automotive company that involved multiple data collection steps. After static validation of the proposed strategy it was evaluated on one distributed automotive software function, the Fuel Level Display, and found to be both feasible and effective. © Springer International Publishing AG 2016.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf