Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Frid Kastrati, Mattias
    et al.
    Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.
    Goswami, Prashant
    Blekinge Institute of Technology, Faculty of Computing, Department of Creative Technologies.
    Selective rasterized ray-traced reflections on the GPU2016In: Eurographics Proceedings STAG 2016 / [ed] Andrea Giachetti and Silvia Biasotti and Marco Tarini, Eurographics - European Association for Computer Graphics, 2016Conference paper (Refereed)
    Abstract [en]

    Ray-tracing achieves impressive effects such as realistic reflections on complex surfaces but is also more computationally expensive than classic rasterization. Rasterized ray-tracing methods can accelerate ray-tracing by taking advantage of the massive parallelization available in the rasterization pipeline on the GPU. In this paper, we propose a selective rasterized raytracing method that optimizes the rasterized ray-tracing by selectively allocating computational resources to reflective regions in the image. Our experiments suggest that the method can speed-up the computation by up to 4 times and also reduce the memory footprint by almost 66% without affecting the image quality. We demonstrate the effectiveness of our method using complex scenes and animations.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf