Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Kankatala, Sriram
    Blekinge Institute of Technology, Faculty of Computing, Department of Communication Systems.
    Performance Analysis of kNN on large datasets using CUDA & Pthreads: Comparing between CPU & GPU2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Several organizations have large databases which are growing at a rapid rate day by day, which need to be regularly maintained. Content based searches are similar searched based on certain features that are obtained from various multi media data. For various applications like multimedia content retrieval, data mining, pattern recognition, etc., performing the nearest neighbor search is a challenging task in multidimensional data. The important factors in nearest neighbor search kNN are searching speed and accuracy. Implementation of kNN on GPU is an ongoing research from last few years, focusing on improving the performance of kNN. By considering these aspects, our research has been started and found a gap in this research area. This master thesis shows effective and efficient parallelism on multi-core of CPU and GPU to compare the performance with single core CPU. This paper shows an experimental implementation of kNN on single core CPU, Mutli-core CPU and GPU using C, Pthreads and CUDA respectively. We considered different levels of inputs (size, dimensions) to evaluate the performance. The experiment shows the GPU outperforms for kNN  when compared to CPU single core with a factor of approximately 5.8 to 16 and CPU multi-core with a factor of approximately 1.2 to 3 for different levels of inputs.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf