Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Berglind, Robin
    Blekinge Institute of Technology, Faculty of Engineering, Department of Mechanical Engineering.
    Impact of Sidewall Pressure on High Voltage Cables2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    When a high voltage cable is transported throughout factory it is affected by sidewall pressure in cable bends between the roller supports and the cable. The problem is when the sidewall pressure is too high it will deform the cable which can have a negative impact on the conductivity of the cable. The roller supports can also get damaged because of fatigue. These negative consequences are the subject to exploration by implementing known analytical solution of contact mechanics developed by Hertz together with finite element analysis and experimental testing.

     

    Two possible methods of measuring the radial force is studied to be able adjust the roller supports positions to reduce the sidewall pressure on the cable. The first one is to use the pressure film to determine the radial force. The second one is to by measuring the compression in cable to thereafter translate it to radial force by having the relation between compression and radial force for the specific cable.

     

    Two different types of high voltage cables, a direct current (DC) cable and an alternating current (AC) cable is studied by using finite element method and experimental tests to see the relation between the compression and radial force in the cable. Also in these experimental tests the pressure films are used and evaluated to see if this measuring technique combined with Hertzian’s theory make it possible determining the radial force.

     

    For the method of using the pressure films to determine the radial force the result shows it is difficult to translate the pressure from the films to radial force for a high voltage because of the cable’s armouring wires. The conclusion about these the pressure films is that they are good to use to describe the compression and can be used as relative measurement between the rollers but not for determine the radial force.

     

    The result shows it is a possible to describe relation between compression and radial force for a high voltage cable and use this information to determine the radial force by measuring the compression. But the conclusion is that it is ineffective and less accurate way of measuring the radial force.

     

    These results from this thesis are important for further research within the area and they help creating a greater understanding of sidewall pressure related problems in cables.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf