Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Fiedler, Markus
    et al.
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
    Chapala, Usha Kiran
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
    Peteti, Sridhar
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för teknik och estetik.
    Modeling instantaneous quality of experience using machine learning of model trees2019Inngår i: 2019 11th International Conference on Quality of Multimedia Experience, QoMEX 2019, Institute of Electrical and Electronics Engineers Inc. , 2019Konferansepaper (Fagfellevurdert)
    Abstract [en]

    For service providers and operators, successful root cause analysis is essential for satisfactory service provisioning. However, reasons for sudden trend changes of the instantaneous Quality of Experience (QoE) may not always be immediately visible from underlying service- or network-level monitoring data. Thus, there is the challenge to pinpoint such moments of change in provisioning, and model the impact on instantaneous QoE, as a lead in root cause analysis. This work investigates the potential of Machine Learning (ML) of deriving time-interval-based models for instantaneous QoE ratings, obtained from a set of publicly available rating traces. In particular, the paper demonstrates the capability of the ML algorithm M5P to model trends of instantaneous QoE through model trees, consisting of piecewise linear functions over time. It is shown how and to which extent these functions can be used to estimate moments of change. Furthermore, the model trees support earlier assumptions about exponential shapes of instantaneous QoE over time as reactions to sudden changes of provisioning, such as video freezes. © 2019 IEEE.

1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf