Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Abdelraheem, Mohamed Ahmed
    et al.
    SICS Swedish ICT AB, SWE.
    Gehrmann, Christian
    SICS Swedish ICT AB, SWE.
    Lindström, Malin
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Nordahl, Christian
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Executing Boolean queries on an encrypted Bitmap index2016Ingår i: CCSW 2016 - Proceedings of the 2016 ACM Cloud Computing Security Workshop, co-located with CCS 2016, Association for Computing Machinery (ACM), 2016, s. 11-22Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a simple and efficient searchable symmetric encryption scheme based on a Bitmap index that evaluates Boolean queries. Our scheme provides a practical solution in settings where communications and computations are very constrained as it offers a suitable trade-off between privacy and performance.

  • 2.
    Nordahl, Christian
    et al.
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
    Boeva, Veselka
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
    Grahn, Håkan
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
    Netz Persson, Marie
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
    Profiling of household residents’ electricity consumption behavior using clustering analysis2019Ingår i: Lect. Notes Comput. Sci., Springer Verlag , 2019, s. 779-786Konferensbidrag (Refereegranskat)
    Abstract [en]

    In this study we apply clustering techniques for analyzing and understanding households’ electricity consumption data. The knowledge extracted by this analysis is used to create a model of normal electricity consumption behavior for each particular household. Initially, the household’s electricity consumption data are partitioned into a number of clusters with similar daily electricity consumption profiles. The centroids of the generated clusters can be considered as representative signatures of a household’s electricity consumption behavior. The proposed approach is evaluated by conducting a number of experiments on electricity consumption data of ten selected households. The obtained results show that the proposed approach is suitable for data organizing and understanding, and can be applied for modeling electricity consumption behavior on a household level. © Springer Nature Switzerland AG 2019.

  • 3.
    Nordahl, Christian
    et al.
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Grahn, Håkan
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Persson, Marie
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Boeva, Veselka
    Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
    Organizing, Visualizing and Understanding Households Electricity Consumption Data through Clustering Analysis.2018Ingår i: Organizing, Visualizing and Understanding Households Electricity Consumption Data through Clustering Analysis, https://sites.google.com/view/arial2018/accepted-papersprogram , 2018Konferensbidrag (Refereegranskat)
    Abstract [en]

    We propose a cluster analysis approach for organizing, visualizing and understanding households’ electricity consumption data. We initially partition the consumption data into a number of clusters with similar daily electricity consumption profiles. The centroids of each cluster can be seen as representative signatures of a household’s electricity consumption behaviors. We evaluate the proposed approach by conducting a number of experiments on electricity consumption data of ten selected households. Our results show that the approach is suitable for data analysis, understanding and creating electricity consumption behavior models.

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf