
Vol.:(0123456789)1 3

Evolving Systems
https://doi.org/10.1007/s12530-021-09408-y

ORIGINAL PAPER

EvolveCluster: an evolutionary clustering algorithm for streaming data

Christian Nordahl1 · Veselka Boeva1 · Håkan Grahn1 · Marie Persson Netz1

Received: 3 March 2021 / Accepted: 27 October 2021
© The Author(s) 2021

Abstract
Data has become an integral part of our society in the past years, arriving faster and in larger quantities than before. Tradi-
tional clustering algorithms rely on the availability of entire datasets to model them correctly and efficiently. Such require-
ments are not possible in the data stream clustering scenario, where data arrives and needs to be analyzed continuously. This
paper proposes a novel evolutionary clustering algorithm, entitled EvolveCluster, capable of modeling evolving data streams.
We compare EvolveCluster against two other evolutionary clustering algorithms, PivotBiCluster and Split-Merge Evolution-
ary Clustering, by conducting experiments on three different datasets. Furthermore, we perform additional experiments on
EvolveCluster to further evaluate its capabilities on clustering evolving data streams. Our results show that EvolveCluster
manages to capture evolving data stream behaviors and adapts accordingly.

Keywords Evolving data stream · Clustering · Data stream clustering

1 Introduction

In recent years, data has become an integral part of our daily
lives. Due to advances in hardware infrastructures, there are
endless possibilities available to collect any type of data at
a rapid pace. Examples of streaming data sources include
weather sensors, mobile applications, Instagram posts,
electricity consumption, shopping records, etc. (Bifet et al.
2010b).

These data streams are endless information sources
that arrive in a timely fashion. Incoming data tends to be
unlabeled, as it requires too much effort to label it by hand.
The immense amount of data proves to be hard to manage
with traditional supervised machine learning algorithms
and caused the emergence of unsupervised learning tech-
niques. Unsupervised learning is a branch of machine learn-
ing where algorithms learn by themselves, identifying the
underlying structure of a dataset. Depending on the applica-
tion, the results from the unsupervised learning algorithms
can be used directly for analysis or as an intermediary step
to gain an understanding of the data. One of the branches
of unsupervised learning is the task of clustering analysis.

Clustering is the process of grouping data instances into
groups based on their similarity to each other (Gama 2010).
Intuitively, instances within a cluster are more similar to
each other than to other instances belonging to another
cluster (Jain et al. 1999; Zubaroglu and Atalay 2021).
The objective of clustering algorithms is to detect these
underlying characteristics of the instances that make each
cluster unique. Traditional clustering algorithms, such as
k-means (Lloyd 1982), require the entire dataset to be avail-
able. In data stream clustering, the data arrives incrementally
in such a high quantity and pace that traditional clustering
methods cannot cope with (Gama 2010).

In the evolving data stream scenario, we have a con-
tinuous data stream that contains changes over time. These
changes cause traditional offline models to become obsolete
over time as the new data no longer conforms to how the
model has been trained. Incremental clustering algorithms,
such as the one introduced by (Lughofer 2008), are one
way to address the problem of evolving data streams. These
algorithms process elements on a step-wise basis and injects
them into the existing clustering solution, updating the clus-
ters by merging or splitting if needed.

Many applications do, however, not necessarily need
such rapid adaptations given by incremental clustering algo-
rithms. Instead, by approaching the data stream segmentally,
it is possible to view how the data is changing over time
directly. For example, electricity providers can identify if

 * Christian Nordahl
 christian.nordahl@bth.se

1 Department of Computer Science, Blekinge Institute
of Technology, Valhallavägen 1, 37141 Karlskrona, Sweden

http://orcid.org/0000-0001-7199-8080
http://crossmark.crossref.org/dialog/?doi=10.1007/s12530-021-09408-y&domain=pdf

 Evolving Systems

1 3

and how the electricity consumption trend has altered in
a single household, neighborhood, or an entire city, and
determine if any remediation is required. Likewise, an online
retailer can identify consumer shopping trends and how they
change over time. When an overarching view of how the data
aligns with previous structures and how it changes over time
is desirable, there is a lesser need for direct updates to the
clustering models.

In this study, we propose a novel evolutionary cluster-
ing algorithm capable of modeling data streams containing
evolving data, entitled EvolveCluster, a continuation of our
previous work (Boeva and Nordahl 2019). Instead of pro-
cessing elements individually, we collect data over a defined
period (creating segments) to trace how the data evolves.
Two similar approaches have been identified to compare
and evaluate the proposed algorithm, namely PivotBiClus-
ter (Ailon et al. 2012) and Split-Merge Evolutionary Clus-
tering (Boeva et al. 2019). Both these algorithms address
the evolving data stream scenario by dividing the data into
segments. In contrast to EvolveCluster, PivotBiCluster and
Split-Merge Clustering map previous clustered data seg-
ments to fit with the newly arrived data segment. Both these
algorithms combine the current data segment with the previ-
ous one by identifying similarities between the clusters from
the two segments. However, the main drawback with both
PivotBiCluster and Split-Merge Clustering is that they both
require each data segment to be clustered in advance.

Our main contributions are as follows:

– We introduce a new algorithm, entitled EvolveCluster,
that is especially targeted at evolving data streams. The
design of the algorithm makes it easy to understand
how trends and patterns appear in the data segments
(Sect. 4.2).

– We provide a thorough analysis of the computational
complexity of the proposed algorithm (Sect. 4.3).

– We evaluate the performance of EvolveCluster, PivotBi-
Cluster, and Split-Merge Clustering, and we identify and
discuss their strengths and weaknesses (Sects. 6 and 7).

2 Background

In this section we provide the necessary background infor-
mation. First a description of clustering analysis is pro-
vided, with a specific definition of k-medoids. We continue
by introducing concept drift, dissimilarity measures, and
conclude this section with an explanation of evaluation and
validation measures.

2.1 Clustering algorithms

Clustering algorithms are designed to identify an under-
lying structure of data and use the detected relationships
within the structure to group the data points into distinct
groups. These algorithms usually decide upon themselves
how to divide the data into subgroups, an unsupervised
approach to increase knowledge about the data. There
are numerous ways of approaching this task and we can
group them into five major categories: density-based, grid-
based, hierarchical, model-based, and partitioning algo-
rithms (Berkhin 2006). This study focuses on partitioning
algorithms due to the proposed evolutionary clustering
algorithms characteristics (see Sect. 4).

Partitioning algorithms differ from the other algorithm
types in their need to define the number of clusters in
advance. The number of clusters, usually denoted as k, is
a parameter given to the algorithms when they are initial-
ized. But, identifying an appropriate k in advance is not
easy. A common approach to identify a suitable k is having
the algorithm execute multiple times with an increasing k
value. More sophisticated methods exist, where the data
is analyzed in advance with an initialization algorithm
that estimates how many clusters are present in the data-
set (Arthur and Vassilvitskii 2006). These initialization
algorithms, however, do not promise to produce an optimal
solution.

One of the most prolific examples of a partitioning
algorithm is the k-means algorithm. k-means starts by
assigning k initial cluster centroids, either randomly or by
an initialization algorithm. All data points are distributed
into each cluster based on their distance to the centroids.
The solution is refined by first electing a new cluster cen-
troid, based on the mean values of each data object in
the cluster, and then redistributing the data points accord-
ingly. k-means refines the solution until changes are no
longer made or until a maximum limit of iterations has
been reached.

k-medoids, or Partitioning Around Medoids (Vinod
1969), is similar to k-means and generally seen as a sister
algorithm. k-medoids, however, use actual data points as
cluster centroids instead of creating synthetic centroids.
This approach makes the algorithm more robust than
k-means, being less susceptible to noise and outliers.

Evolving Systems

1 3

2.2 Concept drift

One of the phenomenons present in data streams, espe-
cially in evolving data streams, is how the data changes
and evolves. This non-stationarity of data over time
is referred to as concept drift (Khamassi et al. 2018).
Depending on the data and how it changes over time, dif-
ferent types of concept drifts may exist in the streams.
Wadewale and Desai (2015) divided concept drift in six
categories: sudden, incremental, gradual, recurring, blip,
and noise. Sudden concept drifts are abrupt changes to the
data, while incremental and gradual drifts happen more
slowly. A recurring drift is a sudden, gradual, or incre-
mental drift that happens periodically. Blip and noise are
defined as outliers and random instances that should be
filtered out, respectively.

Concept drift is a crucial aspect of learning from evolv-
ing data streams. As the data evolves, the algorithm needs
to be capable of adapting and continuously learn about the
underlying data structure to model it correctly. In addition to
our comparative experiments (Sects. 6.1–6.3), we perform
an additional set of experiments to focus solely on Evolve-
Cluster’s ability to model data streams where concept drift
is present (see Sect. 6.4).

2.3 Dissimilarity measures

Calculating the distance, or dissimilarity, between two
objects is a requirement to enable the use of distance-based
clustering algorithms such as k-medoids (Vinod 1969).
These measures provide a numerical value that indicates
how dissimilar or distant two data objects are. Numerous
variants of measures exist, and their usage depends on the
data itself. Two of the most common measures are the L1
and L2 , commonly referred to as Manhattan and Euclidean
distance (ED) (Wang et al. 2013), respectively. These two
measures are relatively simple and tend to be very effective
when the dataset has a lower dimensionality.

Based on the application, a variety of dissimilarity meas-
ures exist. Concerns such as dimensionality, computational
efforts, type of data, etc., factor in choosing the meas-
ure (Shirkhorshidi et al. 2015). For instance, an electricity
consumption dataset is a time series dataset. If the shape of
the consumption, i.e., behavior, is desired, a measure such
as DTW (Sakoe and Chiba 1978) is an eligible candidate
measure. As an elastic measure, DTW could identify simi-
lar behaviors that occur at different times of day as closely
related. If instead a strict measure was used, such as ED,
those similar behaviors would likely not be identified as
similar. However, if there was a concern that the behaviors

should be performed at the exact time and place each day
to be identified as similar, ED would be a better choice of
measure Nordahl et al. (2019).

The datasets used in this study vary quite distinctively in
their type and number of data points. None of them, how-
ever, is considered to be a high-dimensional dataset. Thus,
we decided to use ED (Wang et al. 2013) on our datasets to
focus on the algorithms and their properties. ED is defined
as follows

where q and p are two data vectors consisting of n-dimen-
sions and pi and qi are individual points in p and q,
respectively.

2.4 Cluster validation measures

The data mining literature provides a wide range of differ-
ent cluster validation measures, which are broadly divided
into two major categories: external and internal (Jain and
Dubes 1988). External validation measures have the benefit
of providing an independent assessment of clustering qual-
ity, evaluating the clustering results with respect to a pre-
specified structure. Within the external evaluation, there are
two distinct classes of measures: unary and binary (Handl
et al. 2005). Unary measures often take a clustering solu-
tion as input and compare it against the ground truth. The
clustering solution can be evaluated with regard to both
the purity and the completeness of the clusters. F 1 is one
example of such a validation measure (Chinchor 1992). In
addition, to unary measures, a number of indices that assess
the consensus between two partitioning solutions, based on
the pairwise assignment of data points, are provided in the
data mining litterature. Most of these indices are symmetric,
making them well-suited for assessing the similarity of two
clustering solutions, in which the Jaccard Index is a good
example of (Jaccard 1912).

Internal validation techniques, on the other hand, avoid
the need for using such additional knowledge. They evalu-
ate the clustering solutions based upon the same informa-
tion that were used to create the clusters, enabling them to
evaluate the quality of the produced clustering solutions in
different ways. Internal measures can be divided into four
categories based on how they evaluate clustering solutions:
compactness, separation, connectedness, and stability of
the cluster partitions. A detailed overview of different types

(1)ED(q, p) =

√√√√
n∑

i=0

(
qi − pi

)2
,

 Evolving Systems

1 3

of validation measures is available in (Halkidi et al. 2001;
Vendramin et al. 2010).

Traditionally, many researchers working in data stream
clustering apply well known validation measures to evalu-
ate the clustering solutions produced by their data stream
clustering algorithms (Silva et al. 2013), such as Sum
of Squared Errors (SSE) and purity. Specific validation
measures do, however, exist in the realm of data stream
clustering. In 2011, Cluster Mapping Measure (CMM) is
proposed as an effective measure for data stream cluster-
ing (Kremer et al. 2011). CMM is a combination score of
missed objects, misplaced objects, and noise inclusion,
and is based on the ground truth. More recently, several
adaptations of well-known validation measures have been
proposed, including Silhouette Index (Da Silva et al.
2020), Davies-Bouldin (Da Silva et al. 2020), and Xie-
Beni (Moshtaghi et al. 2019). All of the aforementioned
measures are, however, designed for incremental clus-
tering algorithms. The algorithm proposed in this paper
divides the stream into fixed-sized segments and separates
the segments to analyze and evaluate them individually.
Due to the algorithm’s intended application and design,
that a stream is divided into segments, it can be argued
that it is not necessary to adopt the incremental validation
measures. EvolveCluster does not process elements incre-
mentally. Instead, each segment is statically clustered,
which allows us to utilize traditional validation measures
on each segment. Furthermore, as the algorithm only oper-
ates on entire segments and not individual instances, there
is no directly applicable way to validate with these types
of measures.

In the coming sub-sections, we describe and define the
evaluation measures we apply in the study. We use two
external (F1-measure and Jaccard Index) and two inter-
nal (Silhouette Index and Average Intra-Cluster Distance)
cluster validation measures to the clustering solutions gen-
erated by our experiments.

2.4.1 F
1
‑measure

F1 is the harmonic mean of the precision and recall val-
ues of each cluster. Consider two clustering solutions,
A = {A1,… ,Ak} and B = {B1,… ,Bl} , of the same dataset.
We define A as the known partitioning of the dataset and
B as the partitioning produced by the applied clustering
algorithm. We then define the F 1 for a cluster Bj as:

(2)F1

(
Bj

)
=

2|Ai ∩ Bj|
|Ai| + |Bj|

,

where Ai is the cluster containing the maximum number of
objects from Bj.

To evaluate the overall F 1 score for the clustering solu-
tion B, two common approaches are used, micro and macro
average. Both versions are similar, but the macro average
sees all classes as equal while the micro average corrects the
score by each individual class’s frequency. In this study, the
datasets used (see Sect. 5.1.1) have a fairly even distribution
of the corresponding classes. Therefore, the macro F 1 is used
and for the clustering solution B it is defined as:

 where l is the number of clusters within B. The F 1 score has
a value between 0 and 1, with 1 indicating a perfect score.

2.4.2 Jaccard Index

For evaluating the stability of a clustering solution, Jaccard
Index (JI) is a suitable candidate. Given two clustering solu-
tions produced from the same dataset, A and B, we define JI
between A and B as follows:

where |A ∩ B| is the number of data points with the same
class in the same clusters in A and B, and |A ∪ B| is the total
number of data points in the same clusters in A and B. JI
ranges from 0 to 1, where a higher value indicates a higher
similarity between the clustering solutions.

2.4.3 Silhouette Index

Silhouette Index (SI) is a cluster validity index that is
used to determine the quality of any clustering solution
C = {C1,… ,Ck} . It produces a score that is based on the
compactness of each cluster and the separation between the
clusters (Rousseeuw 1987). SI for a clustering solution C is
defined as:

where ai is the average distance from object i to the other
objects in its cluster and bi is the minimum average distance
from i to the objects of the other clusters. SI ranges from
-1 to 1, where a value closer to 1 indicates a better cluster-
ing solution, and a value on the negative side of the range

(3)F1(B) =
1

l

l∑

j=1

F(Bj),

(4)J(A,B) =
|A ∩ B|
|A ∪ B|

,

(5)SI(C) =
1

m

m∑

i=1

bi − ai

max
(
ai, bi

) ,

Evolving Systems

1 3

indicate that there are misplaced data points within the clus-
tering solution.

2.4.4 Average Intra‑Cluster Distance

Similarly to SI, the Average Intra-Cluster Distance (IC-av)
measures how compact the produced clusters are. In contrast
to SI, it does not assume a spherical shape of the produced
clusters (Baya and Granitto 2013). Instead of calculating
the radius around the clusters, IC-av produces a Minimum
Spanning Tree (MST) of all data points based on the distance
between the objects in the dataset. The edges containing the
distance between the data points in the tree are then used to
determine the compactness of the clusters in the clustering
solution. For a particular clustering solution C = {C1,… ,Ck} ,
IC-av is defined as:

where nr is the number of objects in cluster Cr
(r = 1, 2,… , k) and dij is maximum edge distance which
represents the longest edge in the path joining objects i and
j in the MST. IC-av produces a score between zero and the
maximum value of the edges in the MST and should be
minimized.

3 Related work

In this section, we provide a review of studies related to our
work. At the end of the section, we specifically review the
two algorithms PivotBiCluster and Split-Merge Evolution-
ary Clustering.

3.1 Evolving data streams

The data stream clustering scenario differs from traditional
clustering because the data is usually not available in its
entirety. Additionally, the data in the stream arrives at such
a rapid pace and in large quantities that it is impossible to
keep the data in the main memory (Gama 2010; Bifet et al.
2010b). Traditional algorithms, such as k-means (Lloyd
1982) and DBSCAN (Ester et al. 1996), rely on the entire
dataset being present. A naive approach to apply traditional
algorithms on data streams would be to re-cluster the entire
solution at each increment. However, this approach is unfea-
sible both in regards to time constraints and the resources
needed by the algorithms (Mousavi et al. 2015; Zubaroglu
and Atalay 2021).

(6)IC-av (C) =

k∑

r=1

1

nr

∑

i,j∈Cr

d2
ij
,

In addition to the quantity and rapidness of data in data
streams, evolving data streams have the additional dynamics
of non-stationarity data over time, also known as concept
drift (Khamassi et al. 2018). Multiple approaches have been
investigated to capture the dynamic aspects of evolving data
streams, including (O’callaghan et al. 2002; Gama et al.
2011; Kriegel et al. 2011; Ghesmoune et al. 2015; Zhou
et al. 2008; Lühr and Lazarescu 2009; Angelov and Zhou
2008). More specifically, Lughofer (2008) proposes an incre-
mental algorithm, where each increment causes the affected
cluster to be split and merged separately, which was further
developed in (Lughofer 2012). Similarly, (Aaron et al. 2014)
extends the k-means algorithm to a dynamic incremental
clustering algorithm. A common idea for capturing evolving
data streams’ dynamic nature is to use incremental algo-
rithms and add functionality to modify clusters by splitting
and merging (Aaron et al. 2014; Lühr and Lazarescu 2009).
In general, these algorithms are divided into two compo-
nents: Online and Offline (Zubaroglu and Atalay 2021). The
online component of the algorithms produces micro clusters
that stay up to date which each increment of data objects
that arrives, and the offline component runs periodically
to finalize the clustering solution based on the produced
microclusters.

3.2 Window based models

Generally, within data stream clustering, especially in con-
trast to traditional clustering, it can be more efficient to
focus on the recent data instead of the entire stream. Several
window models exist, but the following three are the most
popular: damped window, sliding window, and landmark
window (Zubaroglu and Atalay 2021). The damped win-
dow models approach the data limitation by incorporating
a weight factor when the data is processed. No object is
removed from the window, but older the data objects have
lower importance for the model. It is usually performed
by a negative exponential function, such as f (t) = 2−�t .
SNCStream (Barddal et al. 2015) and its extension SNC-
Stream+ (Barddal et al. 2016) operate in a damped win-
dow scenario in a single pass manner. They are based on
social network theory and use homophily to identify non-
hyper spherical clusters. Similarly, pcStream (Mirsky et al.
2015) is also defined to operate in a damped window mode.
pcStream dynamically detects and manages temporal con-
texts by fusing sensor data streams to infer the present con-
cepts and detects new concepts as they emerge.

The sliding window models approach the data stream in a
similar way as damped windows but can be seen as stricter.
Instead of having a decaying function, the sliding window

 Evolving Systems

1 3

is of a fixed size, and all objects within the sliding window
have the same level of importance. When an object is added
at one end of the window, another object is removed at the
other end of the window, providing a window sliding over
the stream.

DenStream (Cao et al. 2006) and its extension
HDDStream (Ntoutsi et al. 2012), that handles high-dimen-
sional data, follow an online-offline design, and are based on
the DBSCAN clustering algorithm. The online procedures
of the algorithms produce micro-clusters based on the den-
sity, which are later fed to the offline procedures, where the
real clusters are created. WCDS (Cardoso et al. 2017) also
follows the online-offline approach, creating micro-clusters
in the online phase, but the offline phase was based on an
agglomerative clustering algorithm to define its top-level
clusters.

In contrast, landmark window models divide the data
by assigning fixed landmarks where all data between two
landmarks is a window. When a landmark is reached and a
window ends, the succeeding window starts from that land-
mark point. A typical approach for landmark window-based
clustering algorithms is to use the divided data stream to
cluster them separately and use the produced centroids for
that segment as representation, usually with partition-based
algorithms.

The Stream framework was one of the earliest methods for
stream clustering (Guha and Mishra 2016). The data stream
is divided into segments, and each segment is clustered by
k-median. The produced cluster centers from the segments
are added into buckets representing a prototype array, end-
ing up with ki medians, where i is the number of clustered
segments. Whenever the number of stored medians surpass
a parameter m, k-medians is run upon the prototype array
to produce a median of medians situation. Stream LSearch
is an extension of the Stream method, where a more effec-
tive subroutine for the underlying k-median was introduced
called LSearch (O’callaghan et al. 2002). In 2015, a stream
adaptation called StreamKM++ (Anderson and Koh 2015)
was proposed to the kmeans++ algorithms. StreamKM++
creates a coreset tree by sampling a subset of the segment
and solves the optimization problem on that subset without
touching the rest of the segment. These sets are then stored
in buffers that are merged whenever a new segment is clus-
tered. StreamXM is a continuation of StreamKM++ and
operates similarly, with Xmeans as the underlying clustering
algorithm (Anderson and Koh 2015).

DUCstream also divides the stream into segments that are
manageable for the system memory, but its underlying struc-
ture is instead a density-based algorithm (Gao et al. 2005).
DUCstream partitions the data space in units and map the

incoming objects in the units; the more mapped objects to
a unit, the denser it is. These dense units are then used to
perform clustering.

None of the methods mentioned above are explicitly tai-
lored for our specified problem. They aim to model the entire
stream with a single clustering solution as best as possible.
We instead intend to divide the stream into segments, clus-
ter them separately, and use the clustered segments to see
how the stream evolves. With clustering solutions produced
of each segment, it is easier to analyze the data between
segments and trace how clusters have remained, changed,
disappeared, or appeared. We have identified two approaches
that similarly address the data stream clustering problem,
namely PivotBiCluster (Ailon et al. 2012) and Split-Merge
Evolutionary Clustering algorithms (Boeva et al. 2019).

3.3 PivotBiCluster

The first algorithm we compare with is PivotBiClus-
ter (Ailon et al. 2012), an algorithm related to Bipartite Cor-
relation Clustering (BCC) (Amit 2004). BCC builds upon
the notion of taking two clustering solutions and combine
them into a larger solution. Either by directly combining two
clusters from different solutions or dividing a cluster from
one solution into several clusters in the other solution. The
combination is decided upon the correlation between the
clusters of the different clustering solutions.

Referring to our problem statement, located in Sect. 4.1,
PivotBiCluster assumes two data segments have been clustered
beforehand, e.g., D0 and D1 , thus producing C0 and C1 . These
two clustering solutions (C0 and C1) are then given to PivotBi-
Cluster, which tries to combine them together, creating C′

1
 , by

merging clusters from each solution based on how similar they
are to each other. The correlation clustering can be applied
over and over; thus, in the formalized problem statement, the
PivotBiCluster continues to create a large clustering solution
by using C′

1
 in combination with C2 to produce C′

2

One of the drawbacks of the PivotBiCluster algorithm is
a lack of the ability to split a cluster into several others in
the other clustering solutions. This drawback was the pri-
mary motivation of the Split-Merge Evolutionary Clustering
algorithm.

3.4 Split‑merge evolutionary clustering

The Split-Merge Evolutionary Clustering (Split-Merge Clus-
tering) algorithm builds upon the idea present in BCC clus-
tering algorithms, with the addition of splitting a cluster into
multiple clusters in the other clustering solution (Boeva et al.

Evolving Systems

1 3

2019). This means that if a larger cluster exists within one
of the clustering solutions, it can be split up into multiple
clusters in the algorithm’s output. Similar to the approach
of PivotBiCluster, the Split-Merge Clustering algorithm also
assumes the incoming data from the data stream D is clus-
tered in advance. Additionally, just as the PivotBiCluster, the
clustering can either occur continuously, thus create a final
large clustering solution that contains all the data elements
from the dataset. Another option can be to take intermediary
steps to filter out the data from the previous segment(s) to
create a more reflecting model on the present type of data
in the data stream.

One of the significant benefits of Split-Merge Clustering,
compared to PivotBiCluster, is the splitting of clusters. The
authors claim that with that addition, the algorithm is less
sensitive to under- and over-clustering of each data segment,
as the clusters are now more easily modified over time.

In contrast to our proposed algorithm, which we present
in the following section, the Split-Merge Clustering algo-
rithm links the old and new clustering solutions together.
Depending on what type of data is being analyzed, this can
be counter-productive if the clustering aims not to solely
focus on current trends in the data.

4 An evolutionary clustering algorithm

4.1 Problem statement

Let us formalize the evolving data scenario we aim to
address. Assume that D is a continuous stream of data, and
a vector of features represents each data point. D0 is the ini-
tial data segment which has been partitioned into k clusters,

C0 = {C00,… ,C0k} . Additionally, D1,… ,Dt , where t → ∞ ,
are continuous segments of data in the stream to be parti-
tioned. Our objective is to produce a clustering solution, or
clustering solutions, modeling how the data evolves.

4.2 EvolveCluster: an evolutionary clustering
algorithm

In this section, we formally describe the proposed sequen-
tial partitioning algorithm, entitled EvolveCluster. The main
idea of EvolveCluster is to allow a continuous data behavior
to be easily modeled, by incorporating gained knowledge
from the previous data segments, in the form of the cluster
centroids, to influence the clustering of the new data seg-
ment. Using previous centroids, we can trace how the clus-
ters evolve as the clusters are related over the data segments.
Likewise, with each segment being clustered individually,
it is easy to identify reoccurring trends between segments
and changes in the data. The algorithm idea is schematically
illustrated in Fig. 1.

Similar to both PivotBiCluster and Split-Merge Cluster-
ing, EvolveCluster divides the data stream into individual
data segments. Likewise, the initialization of EvolveCluster
requires the first data segment to be clustered in advance.
The remaining data segments are, however, clustered within
EvolveCluster. Each segment is sequentially clustered, using
a partitioning algorithm, with the aid of the cluster centroids
(seeds) from the previous segment. EvolveCluster assumes
the new data segment contains at least some of the structure
from the previous segment by incorporating the clustering
structure from the previous segment. The following opera-
tions are conducted on each new data segment:

– The data points of the segment is initially clustered by
seeding with the cluster centroids of the previous seg-
ment;

– The old centroids are removed and any empty clusters are
deleted;

– New centroids for the clusters are elected, and the clus-
tering solution is refined.

The refined clustering solution undergoes a “trial-and-error”
approach to detect if any clusters should be split into two
by applying a 2-means clustering algorithm on a cluster
basis. The 2-means clustering algorithm is initialized with
the two data points in the cluster that exhibit the furthest
distance to each other. If the clustering solution containing
the split clusters is deemed the better clustering solution, by
a validation measure, it is kept. Otherwise, it is discarded.
The algorithmic steps conducted at each data segment are
defined in Algorithm 1.

C

C

C

C

C

C

C

C

C

C

C

C

t t t t

D D D D

C

C

C

C

C

C

C

C

C

C

C

C

t t t t

D D D D

Fig. 1 A schematic illustration of the proposed EvolveCluster. D i
represents data segments at time ti , C ij represents clusters in cluster-
ing solutions C i of data segments Di , and t represents individual time
segments

 Evolving Systems

1 3

Algorithm 1: EvolveCluster
Input : Data segment Dt, Centroids {c1, . . . , ck} ∈ Ct−1
Output: Clustering solution Ct

1 Ct ← InitialPartition(Dt, c1, . . . , ck)
2 Ct ← RefineSolution(Ct)
3 S ← SI(Ct)
4 while SplitPerformed = True do
5 SplitPerformed ← False
6 for Cti ∈ Ct do
7 C′

t ← Split(Ct, Cti)
8 if S+ τ < SI(C′

t) then
9 S ← SI(C′

t)
10 Ct ← C′

t
11 SplitPerformed ← True
12 break
13 end
14 end
15 end

4.3 Computational complexity

In this section, we examine the computational costs of
the clustering and splitting operations of the proposed
algorithm. Depending on what underlying clustering algo-
rithm is used, the computational complexity will differ.
The approach proposed in this study uses k-medoids, a
distance based partitioning algorithm. k-medoids requires
a distance matrix of size n × n to be computed, where n
is the number of elements. The distance matrix occupies
the majority of both the computations and memory con-
sumption of the algorithm, being a complexity of O

(
n2d

)

and O
(
n2
)
 , respectively, where d is the feature space

dimension.
In this study, we propose the use of k-medoids whose

complexity has been thoroughly studied (Schubert and
Rousseeuw 2019). We can divide k-medoids into two
parts: i) Initialization and ii) Refinement. The initialization
according to the original implementation, which opts to
identify a beneficial starting point, generates a complexity
of O

(
n2k

)
 where k is the number of clusters. When initial

medoids are provided, or randomly chosen, the complexity
instead becomes O(nk) . However, the refinement process
remains the same as originally defined, generating a com-
plexity of O((n − k)2ki) , where i is the number of itera-
tions performed in the refinement. This we can simplify
to O

(
n2ki

)
 as k << n.

Here, we present the computational complexity of a
single iteration of EvolveCluster. Suppose n is the number
of data instances in the entire dataset and n′ is the num-
ber of instances in each data segment, where n′ << n . The
initial clustering occurs in two steps, InitialPartition and
RefineSolution, as defined in Algorithm 1 (steps one and

two, respectively). InitialPartition assigns each data object
in the current segment to the closest centroid, removes the
initial centroids, and deletes any empty clusters, with a com-
putational cost of O(n�k + k + k) → O(n�k) . RefineSolution
is a direct implementation of the original k-medoids algo-
rithm, giving a complexity of O(n�2ki) . The initial clustering
of EvolveCluster then becomes O(n�k + n�2ki) , which can be
simplified to O(n�2ki).

The split criterion of EvolveCluster is calculated once
outside the loop and once for every time a split is performed
inside the loop. In the proposed approach, we use the SI
as our measure for the split criterion, which has a compu-
tational complexity of O

(
2n� + n�2

)
 . EvolveCluster splits

a cluster by first identifying the two elements that are the
furthest apart, O(n�2) . k-medoids is then used with k = 2
with the two identified elements as initial centroids, i.e.
O(n�k + n�2ki) . A single iteration of the splitting loop then
becomes O(n�2 + n�k + n�2ki + 2n� + n�2) , which we can sim-
plify to O(n�2ki).

As each cluster in the produced clustering solution Ct
is split at least once, the lower bound of iterations for the
splitting part of EvolveCluster becomes k times. This gives
the lower bound for splitting to be O(k(n�2ki)) → O(n�2k2i) .
The upper bound, on the other hand, is dramatically higher.
In the worst case, a split is performed in every iteration
which causes the final clustering solution to consist solely
by singleton clusters, i.e., n′ iterations. The upper bound
then becomes O(n�(n�2ki)) → O(n�3ki) . Finally, the total
complexity for each increment, with the inclusion of the
distance matrix calculation, of the EvolveCluster algorithm
is O(n�2ki + n�2k2i + n�2d) → O(n�2(k2i + ki + d)) → O(n�2(k2i + d)) . If
we include the upper bound calculation, the complexity of
EvolveCluster becomes O(n�2ki + n�3ki + n�2d) → O(n�3ki).

Evolving Systems

1 3

Similarly to EvolveCluster, the Evolutionary Split-Merge
Clustering bases its complexity on the underlying cluster-
ing algorithm (Boeva et al. 2019). Evolutionary Split-Merge
Clustering adds the additional computational overhead
O((k� + k�)n�) . In combination with k-medoids, its complex-
itiy becomes O((k� + k�)n� + n�2ki) → O(n�2ki) , which is in
line with the produced lower bound complexity of Evolve-
Cluster. The auhors of PivotBiCluster, on the contrary, have
not proposed their complexity calculations in the clustering
scenario (Ailon et al. 2012). Thus, we have no direct com-
parisons to perform.

5 Data and experimental designs

We perform two sets of experiments to investigate the
effectiveness of EvolveCluster. The first experiment com-
pares EvolveCluster and two similar clustering algorithms
on three different datasets to analyze their differences and
performances. In our second experiment, we analyze how
EvolveCluster handles different concept drift scenarios by
generating a synthetic data stream.

5.1 Experiment 1: comparative analysis

5.1.1 Data

We evaluate and compare the performance of the proposed
EvolveCluster algorithn to two other clustering algorithms
(PivotBiCluster and Split-Merge Clustering) on three differ-
ent datasets, explained in Table 1. The first is the S1 data-
set, a 2-dimensional synthetic dataset created by the authors
of (Fränti and Virmajoki 2006). This dataset is chosen to
investigate the algorithms ability to identify new clusters as
they arrive in the data stream, and how they manage with
regard to clustering a constant type of behavior over time.

The second dataset is a subset of the Covertype dataset,
available at the UCI repository (Hettich and Bay 1999). The
motivation behind the use of this dataset is mainly to have
a direct comparison to both the PivotBiCluster and Split-
Merge Clustering algorithms, as the authors of the latter
algorithm have performed experiments upon it in their

paper (Boeva et al. 2019). However, it is also chosen due to
its larger number of data points in combination with a higher
dimensionality of its features compared to the S1 dataset.

Finally, the third dataset is a real world electricity con-
sumption dataset, the Domestic Electrical Load Metering,
Hourly Data (DELMH) (Toussaint 2019). DELMH contains
consumption from a large number of households and meter-
ing stations in South Africa covering the period from 1994
to 2014, with measurements taken up to every 5 minutes.
It is worth noting that the single household with the most
prolonged consumption period amounts to roughly two years
worth of consumption. This type of dataset is one of the
main target areas for our proposed algorithm.

All information about the used datasets in their original
form is presented in Table 1.

5.1.2 Data pre‑processing

5.1.2.1 S1 dataset The S1 dataset is divided into five equal
parts, each part consisting of 1’000 elements. We do, how-
ever, create two distinct experimental datasets from the S1
dataset. The first dataset keeps the original format where
each cluster appears one by one in order, but the other data-
set is modified such that all data segments contain the same
ratio of all clusters (see below). The two features are normal-
ized in the [0 − 1] range by a Min-Max feature scaling. Each
feature value is subtracted by the minimum value of that
feature (Xmin), and then divided by the difference between
the minimum and maximum value (Xmax) of the feature, i.e.,

with the S1 dataset, we want to allow the algorithms to
showcase how they handle two aspects of data stream clus-
tering. The first is to discover new clusters as they appear in
the data. By keeping the S1 dataset in its original state, each
cluster appears in the data stream one after another. Between
each segment in the original dataset, 2 to 3 clusters disap-
pear, and 2 to 3 new clusters appear.

The second aspect is to model a continuous set of behav-
iors in the data stream over time. We simulate this aspect by
dividing the data points in each cluster evenly between each
segment. Thus, 20% of each clusters’ data points are located
in D0 . D1 consists of the next 20% appear and so on. From
here on and forward, we denote this dataset as the continu-
ous S1 dataset.

5.1.2.2 Covertype dataset To mimic the experiments of
the authors of the Split-Merge Evolutionary Clustering
algorithm, we perform the same steps of pre-processing and
segmentation of the Covertype Dataset (Boeva et al. 2019).
A subset of 50’000 elements is randomly chosen out of the

x� =
x − Xmin

Xmax − Xmin

.

Table 1 Information regarding number of features and instances of
each dataset in their original form. The number of instances in the
DELMH dataset are individual measurements from 71 up to 2940
concurrent households over 21 years, varying between 1 measure-
ment up to 12076 per household

Dataset No. features No. instances

S1 2 5000
Covertype 54 581012
DELMH 1 3341726

 Evolving Systems

1 3

581’012 and 14 out of the 54 features is chosen, excluding
all binary features regarding the soil type. Each feature is
standardized using the z-score, where each feature is sub-
tracted by their mean value (̄x) and divided by the standard
deviation (�), i.e.

The 50’000 data points are divided into 2 segments in a
70-30 split, creating D0 with 35’000 elements and D1 with
15’000 elements.

5.1.2.3 DELMH dataset For the DELMH dataset, we first
divide all available measurements into their correspond-
ing households. All measurements are combined into daily
profiles, such that each daily profile contains measurements
from 00:00 to 23:59. Every daily profile consists of 24 data
points, where each data point in the profile represents the
aggregated consumption of each hour. If any profile con-
tains a measure that is indicated to be invalid, the entire daily
profile is dismissed for further use. All profiles undergo the
same z-score standardization as mentioned above for the
Covertype dataset. However, instead of applying it on a
feature level, we apply it to each individual profile. Each
standardized profile represents the shape of the electricity
consumption and disregards the actual amplitude of the
electricity consumption.

We identify the 10 households with the largest number
of daily profiles, and choose one of them to represent the
use case for our algorithm. The chosen household consists
of 496 daily profiles after the pre-processing stage, starting
from 1997-12-31 and ending on 1999-05-06. The final 496
profiles are divided into 5 segments, where the first seg-
ment (D0) contains 198 elements, corresponding to 40% of
the number of profiles. The remaining 4 segments contain
74-75 profiles each, representing 15% of the total number
of profiles.

A summary of all dataset information after the pre-pro-
cessing and modification is located in Table 2.

5.2 Experiment 2: concept drift analysis

In the second experiment, we specifically investigate how
EvolveCluster performs in an evolving data stream scenario.

z =
x − x̄

𝜎
.

This experiment is conducted on generated synthetic data to
make sure a ground truth is available, the data contains con-
cept drift, and when the concept drifts occur. We created a
Radial Basis Function Generator (RBFGenerator) based on
the implementations available at MOA (Bifet et al. 2010a)
and scikit-multiflow (Montiel et al. 2018). Both MOA and
scikit-multiflow implementations provide evolving data
streams that contain a constant drift of clusters, where each
cluster centroid moves as time progress. However, scikit-
multiflow’s implementation does not contain any creation
or deletion of clusters. Conversely, MOA includes options
of specific events, such as cluster creation and deletion, but
cannot export its stream if more than one additional cluster
is created in the stream. Thus, we have created an RBFGen-
erator that produces evolving data streams with no limita-
tion on the functionalities mentioned.

The produced data streams consist of 10’000 data points
with 2 features. Each stream is initialized with the same ran-
dom seed but has different seeds for generating data points
and cluster events. When 2’500 data points have been pro-
duced, an event occurs in the stream. Additional events then
occur after each 2’000th data point, i.e. at 4’500, 6’500,
and 8’500. An event is randomly chosen out of two options,
creation or deletion. The streams begin with 5 clusters and
are allowed to vary between 2 and 8. The cluster centers
are limited to the [0-1] domain in both features. The cluster
centers’ speed is randomly chosen but limited to 0.0001 per
instance created in the stream. Similarly, the radius of each
cluster is randomly chosen but limited to be 0.02 ± 0.005.

The data streams are divided into five segments each, cre-
ating data segments D0,D1,D2,D3,D4 . Each segment from
D1 and onwards contains an event. To initialize EvolveClus-
ter on the produced data stream, we used the cluster labels
given by the RBFGenerator on the D0 segments and then
calculated the centermost point (i.e., medoid) in each cluster
to use as cluster centers.

5.3 Evaluation and validation

In this study, we combine both internal and external cluster
validation measures to assess the results from both experi-
ments. In the first experiment, both the Covertype and the S1
datasets have ground truth labels, allowing us to use external
validation measures. For these two datasets, we have used

Table 2 Information regarding
number of features and data
points in each data segment of
all datasets after pre-processing

Dataset No. features No. instances

D0 D1 D2 D3 D4

S1 original 2 1000 1000 1000 1000 1000
S1 continuous 2 995 1000 1000 1000 1005
Covertype 14 35000 15000 – – –
DELMH 24 198 74 75 74 75

Evolving Systems

1 3

both the F 1 and JI measures to evaluate how the three studied
clustering algorithms perform regarding the known structure
of the datasets. Additionally, we apply the SI to assess the
compactness and separation of the produced clusters. The
same applies to the data stream we generate for the second
experiment; thus, we apply the same validation measures
as for Covertype and S1. The DELMH dataset in the first
experiment, on the other hand, has no ground truth available,
causing us to focus solely on the internal cluster evaluation
measures. We instead apply the SI and IC-av measures to
evaluate how good the produced clustering solutions are.

To show how the three algorithms in the first experiment
perform over time, we calculate the evaluation metrics for
each individual data segment of the datasets in three ways:

1. Only the data arriving in the current segment is used for
calculating the scores, disregarding how the old data
segment has been altered and merged.

2. Each segment is calculated in combination with the pre-
vious data segment.

3. For some of the experiments, we also evaluate all the
data segments up until that point in time, e.g., when we
reach D3 , we include D0,D1 and D2 in the evaluation.

5.4 Implementation and availability

PivotBiCluster and Split-Merge clustering operate by tak-
ing existing clustering solutions and combine them into
a larger clustering solution. Both algorithms require each
data segment to be clustered beforehand and combine the
produced clustering solutions to create a combined version.
EvolveCluster, on the other hand, focuses solely on clus-
tering the current data segment and only incorporates the
cluster centroids of the previous data segment to produce
the next, disregarding the old clustering solution after its
initial clustering. To compare the results of these three algo-
rithms, we have implemented two additional variations of
the PivotBiCluster and Split-Merge Clustering algorithms.
The first variation is implemented so that after each segment
is clustered, data belonging to the previous data segment is
removed, similar to the EvolveCluster algorithm. The second

a

b

c

Fig. 2 The clustering solutions obtained on each data segment
D0, D1, D2, D3, D4 of the original S1 dataset. The results generated
by the three studied algorithms are depicted as follows: a EvolveClus-

ter, b Split-Merge Clustering, and c PivotBiCluster. Each color of the
data points in the figures represents a single cluster within that seg-
ment

Table 3 Results from the
validation measures F 1 , JI, and
SI on the original S1 dataset,
where previous data segments
are discarded before evaluating,
for all three clustering
algorithms

D0 D1 D2 D3 D4

EvolveCluster F1 1 1 0.770 0.997 1
JI 1 1 0.681 0.993 1
SI 0.826 0.879 0.649 0.750 0.867

Split-Merge F1 1 1 1 1 1
JI 1 1 1 1 1
SI 0.826 0.879 0.848 0.747 0.867

PivotBiCluster F1 1 0.908 0.947 0.978 1
JI 1 0.856 0.909 0.958 1
SI 0.826 0.538 0.824 0.700 0.867

 Evolving Systems

1 3

variation retains the previous data segment as the clustering
progresses but is removed before the next data segment is
clustered.

For the first experiment, all three clustering algorithms
are initialized using the same clustering solution C0 . Pro-
viding all algorithms with the same starting point gives us
insight into how they produce clustering solutions for each
data segment. For PivotBiCluster and Split-Merge Cluster-
ing, we have to cluster D1,D2,… ,Dn before using them in
the algorithms. In the S1 and Covertype experiments, we use
the ground truth labels in conjunction with the NearestCen-
troid classifier (Tibshirani et al. 2002) to find the centroids to
be able to cluster C′

2
 and onwards. For DELMH, we employ

k-medoids to do the initial clustering of C1,C2,… ,Cn . This
initial clustering is run for 1’000 iterations for each seg-
ment and the number of clusters between 2 and 10. Each
clustering solution is evaluated via SI and IC-av. Empiri-
cally we choose upon the produced clustering solutions as
the input for the PivotBiCluster and Split-Merge Clustering
algorithms. Finally, all the experiments use the Euclidean
Distance as the dissimilarity measure.

a

b

c

Fig. 3 The clustering solutions obtained on each data segment
D1,D2,D3,D4 of the original S1 dataset, where the previous segment
is included. The results generated by the three studied algorithms are

depicted as follows: a EvolveCluster, b Split-Merge Clustering, and c
PivotBiCluster. Each color of the data points in the figures represents
a single cluster within that segment

Table 4 Results from the validation measures F 1 , JI, and SI on the
original S1 dataset, where the previous data segment is kept during
evaluation, for all three clustering algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster F1 1 0.875 0.854 0.998
JI 1 0.827 0.797 0.995
SI 0.783 0.716 0.567 0.793

Split-Merge F1 0.824 0.797 0.816 0.778
JI 0.735 0.687 0.750 0.705
SI 0.313 0.365 0.129 0.103

PivotBiCluster F1 0.758 0.764 0.750 0.778
JI 0.672 0.679 0.664 0.705
SI 0.414 0.176 0.222 0.103

Table 5 Results from the
validation measures F 1 , JI,
and SI on the continuous
S1 dataset, where the all
previous data segments are
kept during evaluation, for the
PivotBiCluster and Split-Merge
Clustering algorithm

D0 D0–D1 D0–D2 D0–D3 D0–D4

Split-Merge F1 1 0.824 0.660 0.760 0.691
JI 1 0.735 0.534 0.712 0.646
SI 0.826 0.313 0.121 −0.102 −0.166

PivotBiCluster F1 1 0.758 0.613 0.760 0.691
JI 1 0.672 0.564 0.712 0.646
SI 0.826 0.414 0.267 −0.102 −0.166

Evolving Systems

1 3

All experiments and algorithms are implemented in
Python 3.6.10 and are available for download here1.

6 Results and analysis

In this section the results from all experiments are presented
and discussed following the order in which the datasets have
been explained in Sect. 5.1.1.

6.1 Original S1 dataset

6.1.1 Original S1

The results from the experiment on the original S1 dataset
are presented in Fig. 2 and Table 3. In Fig. 2, we observe that

the EvolveCluster and Split-Merge Clustering algorithms
are more proficient than PivotBiCluster in identifying new
clusters when they arrive in the data stream. This is further
strengthened in Table 3, where overall scores suggest that
PivotBiCluster performs slightly worse compared to the
other two algorithms. However, as it can be seen in Fig. 2a
(under the D2 header) we observe that EvolveCluster shows a
difficulty in merging clusters together when they are initiated
closely together. This result is logical, since EvolveClus-
ter has no specific merge criterion or dedicated process for
merging more than if the initial clustering of each segments
produce empty clusters they are removed. It is also interest-
ing to notice that Split-Merge Clustering fully follows the
true clustering of the data points, up to the point that even
data points that are overlapping into another cluster is cor-
rectly classified.

To further investigate how the three algorithms operates,
we include the previous data segments for each clustering
solution as explained in Sect. 5.3. These results are presented

a

b

c

Fig. 4 The clustering solutions obtained on each data segment
D0, D1, D2, D3, D4 of the continuous S1 dataset. The results gen-
erated by the three studied algorithms are depicted as follows: a

EvolveCluster, b Split-Merge Clustering, and c PivotBiCluster. Each
color of the data points in the figures represents a single cluster
within that segment

Table 6 Results from the
validation measures F 1 , JI, and
SI on the continuous S1 dataset,
where previous data segments
are discarded before evaluating,
for all three clustering
algorithms

D0 D1 D2 D3 D4

EvolveCluster F1 0.997 0.990 0.993 0.996 0.992
JI 0.994 0.980 0.986 0.992 0.984
SI 0.722 0.715 0.698 0.716 0.708

Split-Merge F1 1 1 1 1 1
JI 1 1 1 1 1
SI 0.719 0.710 0.693 0.713 0.705

PivotBiCluster F1 1 0.334 0.720 0.269 0.722
JI 1 0.213 0.670 0.158 0.672
SI 0.719 0.271 0.208 0.354 0.270

1 https:// github. com/ chris tiann ordahl/ Evolv eClus ter

https://github.com/christiannordahl/EvolveCluster

 Evolving Systems

1 3

in Fig. 3 and Table 4. It is clear that most of the structure
from the previous data segment is lost when combining clus-
tering solutions, both by the PivotBiCluster and, especially,
the Split-Merge Clustering algorithm. Split-Merge Cluster-
ing has a perfect score in both F 1 and JI when each segment
is validated separately, which is to be expected. Each of the

segments are clustered in advance and are following the
ground truth labels from the dataset. Comparing the scores
from the evaluation measures in Table 4, we also observe a
significant decrease of all scores for all three algorithms. The
drop for EvolveCluster, however, is minor in comparison.

Furthermore, in Table 5 we show the results for Pivot-
BiCluster and Split-Merge Clustering when all previous
segments are retained in the clustering solutions. It is clear
that as the algorithms progress through the data segments,
more clusters from the previous segments get merged into
one large cluster for both PivotBiCluster and Split-Merge
Clustering.

6.1.2 Continuous S1 dataset

In this subsection, we present the results obtained from the
continuous version of the S1 dataset, presented in Fig. 4 and
Table 6. We observe that the performance of PivotBiCluster
in this scenario dramatically decreases. In the first iteration,
when D1 is clustered, there is an instant decrease in the num-
ber of clusters (see Fig. 4). The clustering solution should

a

b

c

Fig. 5 The clustering solutions obtained on each data segment
D1,D2,D3,D4 of the continuous S1 dataset, where the previous seg-
ment is included. The results generated by the three studied algo-

rithms are depicted as follows: a EvolveCluster, b Split-Merge Clus-
tering, and c PivotBiCluster. Each color of the data points in the
figures represents a single cluster within that segment

Table 7 Results from the validation measures F 1 , JI, and SI on the
continuous S1 dataset, where the previous data segment is kept dur-
ing evaluation, for all three clustering algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster F1 0.993 0.991 0.995 0.994
JI 0.987 0.983 0.989 0.988
SI 0.718 0.707 0.707 0.711

Split-Merge F1 0.511 0.518 0.514 0.52057
JI 0.346 0.354 0.351 0.358
SI −0.113 −0.141 −0.121 −0.153

PivotBiCluster F1 0.564 0.517 0.396 0.514
JI 0.410 0.370 0.267 0.368
SI −0.109 −0.065 0.177 0.025

Table 8 Results from the
validation measures F 1 , JI,
and SI on the continuous
S1 dataset, where the all
previous data segments are
kept during evaluation, for the
PivotBiCluster and Split-Merge
Clustering algorithm

D0 D0–D1 D0–D2 D0–D3 D0–D4

Split-Merge F1 1 0.511 0.398 0.340 0.343
JI 1 0.346 0.251 0.207 0.210
SI 0.719 −0.113 −0.228 −0.206 −0.146

PivotBiCluster F1 1 0.564 0.346 0.250 0.303
JI 1 0.410 0.214 0.143 0.180
SI 0.719 −0.109 −0.067 0.227 −0.166

Evolving Systems

1 3

contain 15 clusters, as is the case for both EvolveCluster
and Split-Merge Clustering. PivotBiCluster instead opts to
reduce the number of clusters to 2, showing a clear case of
under-clustering. In contrast, both EvolveCluster and Split-
Merge Clustering show that they can cluster a continuous set
of behaviors over time.

Similarly to the original S1 dataset, when the data seg-
ments are merged, it is apparent that Split-Merge Clus-
tering fully adapts the previous data segment’s clustering
solutions to the new segments. Figure 5b shows that many
of the data points are incorrectly clustered for Split-Merge
Clustering. PivotBiCluster has a similar experience when
the segments are merged, as on the separated segments, a
clear result of under-clustering. EvolveCluster, on the other
hand, manages to retain a higher performance with valida-
tion measure scores on par with the non-merged segments.
These results are further emphasized by looking at Table 7.

Only EvolveCluster manages to produce similar results as
when the segments are not merged. Both PivotBiCluster and
Split-Merge Clustering show a drastic decrease in all three
measures, with SI even producing negative numbers. Finally,
when we include all the previous data segments in both the
clustering and evaluation, as shown in Table 8, the produced
clustering solutions of PivotBiCluster and Split-Merge Clus-
tering are both continuing the declining trend.

Figures 10 and 11, available in the Appendix, show the
results produced on both the original and the continuous S1
datasets when all segments are combined.

6.2 Covertype dataset

The results produced by the three clustering algorithms
on the Covertype dataset are shown in Table 9. As can
be seen, PivotBiCluster outperforms both the Split-Merge
Clustering and EvolveCluster algorithms in the case of the
D0 − D1 setup in the table. These results are in line with
the results presented in (Boeva et al. 2019). It is interesting
to notice the difference between EvolveCluster and Split-
Merge Clustering on what scores their clustering solutions
obtain in the D1 column compared to the D0 − D1 column.
Evidently, EvolveCluster does not manage to cluster the
D1 dataset as proficiently as the Split-Merge Clustering
algorithm and the final score when the data segments are
merged is helped by the clustering from D0 . Addition-
ally, as the results generated on the S1 datasets show (see
Figs. 3 and 5), when the two data segments are combined,
it is clear that the clustering solution on D0 given to the

Table 9 Results from the validation measures F 1 , JI and SI on the
Covertype dataset for all three algorithms, on both the individual (D0
and D1) and combined (D0 − D1) data segments

D0 D1 D0–D1

EvolveCluster F1 1 0.422 0.539
JI 1 0.275 0.436
SI 0.063 −0.007 −0.040

Split-Merge F1 1 1 0.754
JI 1 1 0.656
SI 0.063 0.062 0.034

PivotBiCluster F1 1 0.905 0.903
JI 1 0.849 0.848
SI 0.063 0.192 0.194

Table 10 Number of clusters for each algorithm on the Covertype
dataset, on both the individual (D0 and D1) and combined (D0 − D1)
data segments

Algorithm D0 D1 D0 − D1

EvolveCluster 7 3 7
Split-Merge 7 7 7
PivotBiCluster 7 5 5
Ground truth 7 7 7

Table 11 Results from the
validation measures Silhouette
Index and Average Intra-Cluster
Distance on the DELMH
dataset, where the all previous
data segments are discarded
before evaluating, for all
algorithms

D0 D1 D2 D3 D4

EvolveCluster SI 0.080 0.119 0.115 0.054 0.066
IC-av 1189 672 602 570 619

Split-Merge SI 0.080 0.105 0.150 0.077 0.116
IC-av 1189 673 592 588 647

PivotBiCluster SI 0.080 0.119 0.133 0.076 0.116
IC-av 1189 661 591 595 647

Table 12 Results from the validation measures Silhouette Index and
Average Intra-Cluster Distance on the DELMH dataset, where the
previous data segment is kept during evaluationg, for all algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster SI 0.071 0.057 0.067 0.035
IC-av 1716 1268 1107 1147

Split-Merge SI 0.019 −0.012 0.019 0.065
IC-av 1727 1256 1079 1054

PivotBiCluster SI 0.002 −0.015 0.040 0.074
IC-av 1778 1245 1080 1163

 Evolving Systems

1 3

Split-Merge Clustering algorithm is crippled when Split-
Merge Clustering clusters the D1 segment.

Furthermore, in Table 10, we present the number of clus-
ters in each data segment produced by the three algorithms.
We can see that EvolveCluster produces far too few clusters
when clustering D1 , with only three out of the existing seven.
Similarly, PivotBiCluster is under-clustering D1 with five out
of the seven clusters, partly why higher validation measures
are obtained for its solution. It is only Split-Merge Cluster-
ing that manages to retain all seven clusters. These results
follow the previous results on the S1 datasets, where Split-
Merge Clustering consistently adapts the clustering solutions
from previous segments to the new.

It is also interesting to see that all the produced clustering
solutions on the Covertype dataset produce low SI scores.
The two aspects that SI concerns are the compactness of the
produced clusters and the separation between them. Cov-
ertype contains many features and has clusters that overlap
each other in some of the features, causing SI to produce
lower scores for the clustering solutions. This is evident
when we compare the scores of F 1 , JI, and SI for all three
algorithms, but especially for both Split-Merge Clustering
and PivotBiCluster. PivotBiCluster manages to produce an
F 1 score of 0.903 and a JI score of 0.848 while only having
a SI score of 0.194 (Table 9).

6.3 DELMH dataset

The results for the DELMH dataset are presented in
Tables 11 and 12. It is apparent in both tables that all three
algorithms produce clustering solutions with much lower SI
scores compared to the previous experiments. This is partly
because of the difficulty in clustering this dataset. Most of
the daily profiles in the dataset are similar to each other.
During the majority of the day, there is no actual consump-
tion of electricity. When the residents are out of their homes,
only minor consumptions, such as household appliances’
idle consumption, are drawn. Similarly, when the residents
are asleep, only the idle consumptions are drawn.

In Table 12, we can see that for all segments up to
D2 − D3 , the EvolveCluster algorithm performs better in
terms of the SI, but IC-av suggests there is no such clear
distinction. In the final data segment, it is interesting to see
that both PivotBiCluster and Split-Merge Clustering produce
higher SI scores than EvolveCluster, and for Split-Merge
Clustering, there is also a significantly better IC-av score.
However, similarly to the results of the Covertype experi-
ments, both SI and IC-av indicate that the produced cluster-
ing solutions are pretty poor. Based on the nature of the data,
the electricity consumption of an individual household, it is
natural that the produced clustering solutions are deemed

Fig. 6 The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each
color of the data points in the figures represents a single cluster within that segment

Table 13 Results from the validation measures F 1 , JI and SI on the
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.854 1 0.842 0.764
Jaccard 1 0.796 1 0.760 0.662
Silhouette 0.745 0.712 0.697 0.600 0.695

Fig. 7 The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each
color of the data points in the figures represents a single cluster within that segment

Table 14 Results from the validation measures F 1 , JI and SI on the
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.903 0.822 0.650 0.662
Jaccard 1 0.857 0.733 0.514 0.566
Silhouette 0.745 0.685 0.576 0.510 0.572

Evolving Systems

1 3

poorly. Many of the daily profiles contain similar values and
shapes, making it hard to distinguish between them.

6.4 Concept drift analysis

In this subsection, we present the results of the second
experiment, where we investigate how EvolveCluster man-
ages to handle concept drift. In Figs. 6, 7, 8, and 9, we have
4 data streams that are initialized identically but have differ-
ent continuations. The corresponding validation measures
are presented in Tables 13, 14, 15, and 16, respectively.

In the figures, we see constant incremental concept drift
in each of the data streams. All clusters move slightly at
every new data point, creating oval rather than spherical
shaped clusters. We can see that EvolveCluster can model
these incremental changes of each cluster, especially when
the clusters have some distance between each other. How-
ever, when a cluster centroid reaches the boundary of the
feature space, its direction is immediately changed to keep
the cluster within the boundaries. For instance, in the bot-
tom right corner of Fig. 8 in segment D1 , we identify that
the blue cluster has reached the boundary and changed its
direction. EvolveCluster assigns the data points belonging

to the cluster after the directional change to a new cluster as
it is no longer spherical.

In each stream, we can also observe the creation or dele-
tion of clusters in each of the segments from D1 and onwards.
When new clusters appear in the stream, EvolveCluster tends
to manage the addition by applying a split. However, when
the clusters overlap, such as the light blue cluster in segment
D2 of Fig. 9, the new cluster is not immediately identified.

EvolveCluster relies on the transition between segments
to manage the merging of clusters, so we can notice cases
of over-clustering in some segments. For instance, in seg-
ments D3 and D4 of Fig. 7, a single cluster is divided into
3-4 separate clusters on the right side of the figures. When
many clusters are close to each other, and then some of
them disappear, we can observe EvolveCluster struggling
to merge them. When it does not manage to merge clusters,
it cascades further to not splitting the neighboring clusters
if necessary accurately. This is evident in the upper right
corner of the same figure, where the pale orange and red
clusters likely should be divided into three.

Fig. 8 The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each
color of the data points in the figures represents a single cluster within that segment

Table 15 Results from the validation measures F 1 , JI and SI on the
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.865 0.733 0.863 0.831
Jaccard 1 0.800 0.600 0.794 0.746
Silhouette 0.750 0.718 0.572 0.589 0.591

Fig. 9 The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each
color of the data points in the figures represents a single cluster within that segment

Table 16 Results from the validation measures F 1 , JI and SI on the
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.861 0.802 0.755 1
Jaccard 1 0.799 0.703 0.643 1
Silhouette 0.749 0.640 0.664 0.657 0.802

 Evolving Systems

1 3

7 Discussion

7.1 EvolveCluster properties

One of the significant benefits of the proposed EvolveCluster
algorithm is its simplicity in using prior knowledge about the
previous data segments. With previous centroids, Evolve-
Cluster influences the clustering of the new segment to fol-
low the same structure as the previous. The two aspects we
have investigated using the S1 dataset seem to be handled
proficiently by EvolveCluster. When we cluster the original
S1 dataset, as shown in Fig. 3, EvolveCluster discovers new
clusters while maintaining the old clusters still present in
the data. However, in Fig. 3a under D2 , we also identify the
limitations of the proposed algorithm. When two clusters
are close and should be merged, it may result in an over-
clustered solution. As there is no specific merge criterion
for the algorithm, this is not a surprising result.

Furthermore, as shown by the results from the clustering
of the continuous S1 dataset, we can see that it is easy for
EvolveCluster to cluster similar behaviors that repeatedly
occur in multiple segments. Contrary to both PivotBiCluster
and Split-Merge Clustering, it is easy to map and identify
trends that occur between segments. When PivotBiCluster
and Split-Merge Clustering combine the old data segment
with the new, it is clear that the relationships of the clusters
between the segments are lost; thus, providing difficulties in
analyzing the multiple segments and their trends.

7.2 Comparison to other evolving clustering
algorithms

PivotBiCluster is continuously under-clustering the S1
datasets in this study. This can specifically be seen in Fig. 4
and its corresponding Table 6. We can observe here that in
the first iteration of the clustering process, PivotBiCluster
reduces the number of clusters from 15 to 2 and continues
to under cluster for the remainder of that experiment. This
is partly why PivotBiCluster achieves a higher score on both
the F1 and Jaccard measures.

With the variation of discarding the previous data seg-
ment in its produced clustering solutions, the Split-Merge
Clustering algorithm seems to perform better than Evolve-
Cluster in all the experiments in this study. Split-Merge
Clustering never performs any modifications to the new
clustering solution but instead combines the previous and
the new solutions by morphing the old to align with the
new. Since all the clustering solutions provided to Split-
Merge Clustering are either based on the ground truth labels
(S1 and Covertype) or extensively clustered beforehand
(DELMH), the results indicate that the Split-Merge Clus-
tering performs better than EvolveCluster. However, when

we include the prior data segments and use the entirety of
the produced clustering solutions, the results significantly
decreased as shown, e.g., in Fig. 3 and Table 4.

7.3 Handling concept drift and outliers

By analyzing the results and how EvolveCluster operates,
we aim to discuss the characteristics of EvolveCluster in
the presence of outliers. If a prominent outlier exists within
a segment, it will not be removed directly by EvolveCluster.
There are no mechanisms in place in itself that identify or
removes them. Instead, if the outlier drastically differs from
the other clusters, the splitting procedure of the algorithm
is likely to promote the outlier to a singleton cluster. If no
similar data objects arrive in future segments after the cre-
ated singleton cluster, they will be discarded as a part of the
clustering procedure. However, what is seen as an outlier in
the current segment might not be determined to be one in
future segments.

It is harder to determine if the data objects are outliers or
if the streams’ concepts are evolving as the stream evolves.
In our second experiment, where we generated data using
an RBFGenerator, we investigated how EvolveCluster mod-
els data streams with different concept drifts. We included
constant incremental changes to each cluster present in
the data stream, and EvolveCluster managed to model the
moving clusters accurately. This type of concept drift is
not always easy to identify with incremental approaches,
as data is either removed or weighed down as time moves
along. With EvolveCluster, we can compare the produced
clustering solutions of each segment to identify if a cluster
has moved significantly compared to previous segments. If
more significant changes are present, it might be sufficient
to compare two neighboring clustering solutions, but it is
possible to compare segments further apart with drifts that
appear slowly over time.

Additionally, to fully capture the dynamics of evolving
data streams, we included creation and deletion of clus-
ters in our experiments. These represent the sudden and
gradual concept shift scenarios, in addition to when cluster
centroids reach the boundaries and suddenly change direc-
tion. From the results, we noted that the splitting func-
tionality of EvolveCluster generally manages to model
the stream when new clusters emerge. Depending on the
current status of the clustering solutions when new clus-
ters emerge, EvolveCluster identifies the need for a split
to model more accurately. However, as no specific merge
criterion exists and EvolveCluster instead relies on the
transitions to merge clusters, there are occasions where
both over- and under-clustering occurs. When the cluster-
ing solution produced by EvolveCluster represents a single
cluster by multiple smaller clusters, it appears to disrupt
the efficacy of the splitting procedure on another cluster.

Evolving Systems

1 3

Specifically when the cluster to split and the ones to merge
are very close to each other. These tendencies lead us to
believe a merge criterion might be necessary to fully cap-
ture the dynamics of an evolving data stream, but it will
add to the complexity of EvolveCluster.

8 Conclusions

This study has introduced a novel evolutionary clustering
algorithm (EvolveCluster) capable of modeling data streams
containing evolving data. Specifically, our experiments have
shown that the proposed algorithm can retain previous trends
and identify new behaviors as they emerge. Compared to simi-
lar approaches, EvolveCluster does not require each data seg-
ment to be clustered in advance, and it easily identifies the
correlation of clusters between segments. Each segment in the
data stream is clustered based on how the data was behaving in
the previous segment, which produces an efficient clustering.

We have compared our evolutionary clustering algorithm
against two similar approaches, namely the PivotBiCluster

and Split-Merge Evolutionary Clustering algorithms. The
results have shown that the proposed algorithm can clus-
ter a continuous behavior over multiple data segments and
identify new clusters as they emerge. Furthermore, the
experiments have also revealed shortcomings of the other
two algorithms where they tend to alter the given clustering
solutions for the worse.

Our future work includes developing and evaluating a
distributed version of the proposed evolutionary cluster-
ing algorithm. We will also investigate the possibility of
a dynamic split criterion to eliminate the need for tuning a
parameter. Furthermore, incorporating an additional option
to remember cluster centers from data segments earlier
than the previous data segment could be an exciting area of
research. Adding this option could make it easier for Evolve-
Cluster to identify recurring concepts.

Appendix

See Figs 10 and 11.

a

b

Fig. 10 The clustering solutions obtained on each data segment
D0,D1,… ,D4 of the original S1 dataset, where the all previous seg-
ments are included. The results generated by the three studied algo-

rithms are depicted as follows: (a) EvolveCluster, (b) split-merge
clustering, and (c) PivotBiCluster. Each color of the data points in the
figures represents a single cluster within that segment

a

b

Fig. 11 The clustering solutions obtained on each data segment
D0,D1,… ,D4 of the continuous S1 dataset, where the all previous
segments are included. The results generated by the three studied

algorithms are depicted as follows: (a) EvolveCluster, (b) split-merge
clustering, and (c) PivotBiCluster. Each color of the data points in the
figures represents a single cluster within that segment

 Evolving Systems

1 3

Acknowledgements We would like to give our special thanks to Milena
Angelova, one of the authors in (Boeva et al. 2019), for providing us
with their source code to their algorithm and experiments. This work
is funded in part by the research project “Scalable resource-efficient
systems for big data analytics” funded by the Knowledge Foundation
(grant: 20140032) in Sweden.

Funding Open access funding provided by Blekinge Institute of
Technology.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aaron B, Tamir DE, Rishe ND, Kandel A (2014) Dynamic incremental
k-means clustering. In: 2014 international conference on com-
putational science and computational intelligence, vol 1, IEEE,
pp 308–313

Ailon N, Avigdor-Elgrabli N, Liberty E, Van Zuylen A (2012)
Improved approximation algorithms for bipartite correlation clus-
tering. SIAM J Comput 41(5):1110–1121

Amit N (2004) The bicluster graph editing problem. PhD thesis,
Citeseer

Anderson R, Koh YS (2015) Streamxm: an adaptive partitional cluster-
ing solution for evolving data streams. International conference
on big data analytics and knowledge discovery. Springer, Cham,
pp 270–282

Angelov P, Zhou X (2008) On line learning fuzzy rule-based system
structure from data streams. In: 2008 IEEE international confer-
ence on fuzzy systems (IEEE World Congress on Computational
Intelligence), IEEE, pp 915–922

Arthur D, Vassilvitskii S (2006) k-means++: the advantages of careful
seeding. Tech. rep, Stanford

Barddal JP, Gomes HM, Enembreck F (2015) Sncstream: a social
network-based data stream clustering algorithm. In: Proceedings
of the 30th annual ACM symposium on applied computing, pp
935–940

Barddal JP, Gomes HM, Enembreck F, Barthès JP (2016) Sncstream+:
extending a high quality true anytime data stream clustering algo-
rithm. Inf Syst 62:60–73

Baya AE, Granitto PM (2013) How many clusters: a validation index
for arbitrary-shaped clusters. IEEE/ACM Trans Comput Biol Bio-
inform 10(2):401–414

Berkhin P (2006) A survey of clustering data mining techniques.
Grouping multidimensional data. Springer, Berlin, pp 25–71

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010a) MOA: massive
online analysis. J Mach Learn Res 11:1601–1604

Bifet A, Holmes G, Pfahringer B, Kranen P, Kremer H, Jansen T, Seidl
T (2010b) Moa: massive online analysis, a framework for stream
classification and clustering. In: Proceedings of the first workshop
on applications of pattern analysis, PMLR, pp 44–50

Boeva V, Nordahl C (2019) Modeling evolving user behavior via
sequentialclustering. In: Second international workshop on knowl-
edge discovery and user modeling for smart cities (UMCit). Joint
european conference on machine learning and knowledge discov-
ery in databases, Springer, pp 12–20

Boeva V, Angelova M, Devagiri VM, Tsiporkova E (2019) Bipartite
split-merge evolutionary clustering. International conference on
agents and artificial intelligence. Springer, Cham, pp 204–223

Cao F, Estert M, Qian W, Zhou A (2006) Density-based clustering
over an evolving data stream with noise. In: Proceedings of the
2006 SIAM international conference on data mining, SIAM, pp
328–339

Cardoso DO, França FM, Gama J (2017) Wcds: a two-phase weight-
less neural system for data stream clustering. New Gener Comput
35(4):391–416

Chinchor N (1992) MUC-4 Evaluation Metrics. In: Proceedings of the
fourth message understanding conference, pp. 22–29. https:// aclan
tholo gy. org/ M92- 1002. pdf

Da Silva LEB, Melton NM, Wunsch DC (2020) Incremental cluster
validity indices for online learning of hard partitions: extensions
and comparative study. IEEE Access 8:22025–22047

Ester M, Kriegel HP, Sander J, Xu X et al (1996) A density-based
algorithm for discovering clusters in large spatial databases with
noise. Kdd 96:226–231

Fränti P, Virmajoki O (2006) Iterative shrinking method for cluster-
ing problems. Pattern Recognit 39(5):761–765. https:// doi. org/ 10.
1016/j. patcog. 2005. 09. 012

Gama J (2010) Knowledge discovery from data streams. CRC Press,
Boca Raton

Gama J, Rodrigues PP, Lopes L (2011) Clustering distributed sensor
data streams using local processing and reduced communication.
Intell Data Anal 15(1):3–28

Gao J, Li J, Zhang Z, Tan PN (2005) An incremental data stream
clustering algorithm based on dense units detection. Pacific-asia
conference on knowledge discovery and data mining. Springer,
Berlin, pp 420–425

Ghesmoune M, Lebbah M, Azzag H (2015) Clustering over data
streams based on growing neural gas. Pacific-Asia conference
on knowledge discovery and data mining. Springer, Cham, pp
134–145

Guha S, Mishra N (2016) Clustering data streams. Data stream man-
agement. Springer, Berlin, pp 169–187

Halkidi M, Batistakis Y, Vazirgiannis M (2001) On clustering valida-
tion techniques. J Intell Inf Syst 17(2–3):107–145

Handl J, Knowles J, Kell DB (2005) Computational cluster validation
in post-genomic data analysis. Bioinformatics 21(15):3201–3212

Hettich S, Bay S (1999) The uci kdd archive. University of California,
department of information and computer science, irvine, ca. http://
kdd. ics. uci. edu. Accessed Aug 2020

Jaccard P (1912) The distribution of the flora in the alpine zone. 1. New
Phytol 11(2):37–50

Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-
Hall Inc, Hoboken

Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM
Comput Surv (CSUR) 31(3):264–323

Khamassi I, Sayed-Mouchaweh M, Hammami M, Ghédira K (2018)
Discussion and review on evolving data streams and concept drift
adapting. Evol Syst 9(1):1–23

Kremer H, Kranen P, Jansen T, Seidl T, Bifet A, Holmes G, Pfahringer
B (2011) An effective evaluation measure for clustering on evolv-
ing data streams. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing, pp 868–876

http://creativecommons.org/licenses/by/4.0/
https://aclanthology.org/M92-1002.pdf
https://aclanthology.org/M92-1002.pdf
https://doi.org/10.1016/j.patcog.2005.09.012
https://doi.org/10.1016/j.patcog.2005.09.012
http://kdd.ics.uci.edu
http://kdd.ics.uci.edu

Evolving Systems

1 3

Kriegel HP, Kröger P, Ntoutsi I, Zimek A (2011) Density based sub-
space clustering over dynamic data. International conference on
scientific and statistical database management. Springer, Berlin,
pp 387–404

Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf
Theory 28(2):129–137

Lughofer E (2008) Extensions of vector quantization for incremental
clustering. Pattern Recognit 41(3):995–1011

Lughofer E (2012) A dynamic split-and-merge approach for evolving
cluster models. Evol Syst 3(3):135–151

Lühr S, Lazarescu M (2009) Incremental clustering of dynamic data
streams using connectivity based representative points. Data
Knowl Eng 68(1):1–27

Mirsky Y, Shapira B, Rokach L, Elovici Y (2015) pcstream: a stream
clustering algorithm for dynamically detecting and managing tem-
poral contexts. Pacific-Asia conference on knowledge discovery
and data mining. Springer, Cham, pp 119–133

Montiel J, Read J, Bifet A, Abdessalem T (2018) Scikit-multi-
flow: a multi-output streaming framework. J Mach Learn Res
19(1):2914–2915

Moshtaghi M, Bezdek JC, Erfani SM, Leckie C, Bailey J (2019) Online
cluster validity indices for performance monitoring of streaming
data clustering. Int J Intell Syst 34(4):541–563

Mousavi M, Bakar AA, Vakilian M (2015) Data stream clustering algo-
rithms: a review. Int J Adv Soft Comput Appl 7(3):13

Nordahl C, Boeva V, Grahn H, Netz MP (2019) Profiling of household
residents’ electricity consumption behavior using clustering analy-
sis. Int Conf Comput Sci. Springer, Cham, pp 779–786

Ntoutsi I, Zimek A, Palpanas T, Kröger P, Kriegel HP (2012) Density-
based projected clustering over high dimensional data streams. In:
Proceedings of the 2012 SIAM international conference on data
mining, SIAM, pp 987–998

O’callaghan L, Mishra N, Meyerson A, Guha S, Motwani R (2002)
Streaming-data algorithms for high-quality clustering. In: Pro-
ceedings 18th international conference on data engineering, IEEE,
pp 685–694

Rousseeuw PJ (1987) Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis. J Comput Appl Math 20:53–65

Sakoe H, Chiba S (1978) Dynamic programming algorithm optimi-
zation for spoken word recognition. IEEE Trans Acoust Speech
Signal Process 26(1):43–49

Schubert E, Rousseeuw PJ (2019) Faster k-medoids clustering: improv-
ing the pam, clara, and clarans algorithms. Int Conf Similarity
Search Appl. Springer, Cham, pp 171–187

Shirkhorshidi AS, Aghabozorgi S, Wah TY (2015) A comparison study
on similarity and dissimilarity measures in clustering continuous
data. PLoS ONE 10(12):e0144059

Silva JA, Faria ER, Barros RC, Hruschka ER, Carvalho ACd, Gama
J (2013) Data stream clustering: a survey. ACM Comput Surv
(CSUR) 46(1):1–31

Tibshirani R, Hastie T, Narasimhan B, Chu G (2002) Diagnosis of
multiple cancer types by shrunken centroids of gene expression.
Proc Natl Acad Sci 99(10):6567–6572

Toussaint W (2019) Domestic electrical load metering, hourly data
1994-2014. Version 1. https:// www. datafi rst. uct. ac. za/ datap ortal/
index. php/ catal og/ 759. Accessed Aug 2020

Vendramin L, Campello R, Hruschka E (2010) Relative clustering
validity criteria: a comparative overview. Stat Anal Data Min
3:209–235

Vinod HD (1969) Integer programming and the theory of grouping. J
Am Stat Assoc 64(326):506–519

Wadewale K, Desai S (2015) Survey on method of drift detection and
classification for time varying data set. Int Res J Eng Technol
2(9):709–713

Wang X, Mueen A, Ding H, Trajcevski G, Scheuermann P, Keogh E
(2013) Experimental comparison of representation methods and
distance measures for time series data. Data Min Knowl Discov
26(2):275–309

Zhou A, Cao F, Qian W, Jin C (2008) Tracking clusters in evolving
data streams over sliding windows. Knowl Inf Syst 15(2):181–214

Zubaroglu A, Atalay V (2021) Data stream clustering: a review. Artif
Intell Rev 54:1201–1236

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/759
https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/759

	EvolveCluster: an evolutionary clustering algorithm for streaming data
	Abstract
	1 Introduction
	2 Background
	2.1 Clustering algorithms
	2.2 Concept drift
	2.3 Dissimilarity measures
	2.4 Cluster validation measures
	2.4.1 F-measure
	2.4.2 Jaccard Index
	2.4.3 Silhouette Index
	2.4.4 Average Intra-Cluster Distance

	3 Related work
	3.1 Evolving data streams
	3.2 Window based models
	3.3 PivotBiCluster
	3.4 Split-merge evolutionary clustering

	4 An evolutionary clustering algorithm
	4.1 Problem statement
	4.2 EvolveCluster: an evolutionary clustering algorithm
	4.3 Computational complexity

	5 Data and experimental designs
	5.1 Experiment 1: comparative analysis
	5.1.1 Data
	5.1.2 Data pre-processing
	5.1.2.1 S1 dataset
	5.1.2.2 Covertype dataset
	5.1.2.3 DELMH dataset

	5.2 Experiment 2: concept drift analysis
	5.3 Evaluation and validation
	5.4 Implementation and availability

	6 Results and analysis
	6.1 Original S1 dataset
	6.1.1 Original S1
	6.1.2 Continuous S1 dataset

	6.2 Covertype dataset
	6.3 DELMH dataset
	6.4 Concept drift analysis

	7 Discussion
	7.1 EvolveCluster properties
	7.2 Comparison to other evolving clustering algorithms
	7.3 Handling concept drift and outliers

	8 Conclusions
	Acknowledgements
	References

