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Abstract
Data has become an integral part of our society in the past years, arriving faster and in larger quantities than before. Tradi-
tional clustering algorithms rely on the availability of entire datasets to model them correctly and efficiently. Such require-
ments are not possible in the data stream clustering scenario, where data arrives and needs to be analyzed continuously. This 
paper proposes a novel evolutionary clustering algorithm, entitled EvolveCluster, capable of modeling evolving data streams. 
We compare EvolveCluster against two other evolutionary clustering algorithms, PivotBiCluster and Split-Merge Evolution-
ary Clustering, by conducting experiments on three different datasets. Furthermore, we perform additional experiments on 
EvolveCluster to further evaluate its capabilities on clustering evolving data streams. Our results show that EvolveCluster 
manages to capture evolving data stream behaviors and adapts accordingly.

Keywords Evolving data stream · Clustering · Data stream clustering

1 Introduction

In recent years, data has become an integral part of our daily 
lives. Due to advances in hardware infrastructures, there are 
endless possibilities available to collect any type of data at 
a rapid pace. Examples of streaming data sources include 
weather sensors, mobile applications, Instagram posts, 
electricity consumption, shopping records, etc. (Bifet et al. 
2010b).

These data streams are endless information sources 
that arrive in a timely fashion. Incoming data tends to be 
unlabeled, as it requires too much effort to label it by hand. 
The immense amount of data proves to be hard to manage 
with traditional supervised machine learning algorithms 
and caused the emergence of unsupervised learning tech-
niques. Unsupervised learning is a branch of machine learn-
ing where algorithms learn by themselves, identifying the 
underlying structure of a dataset. Depending on the applica-
tion, the results from the unsupervised learning algorithms 
can be used directly for analysis or as an intermediary step 
to gain an understanding of the data. One of the branches 
of unsupervised learning is the task of clustering analysis.

Clustering is the process of grouping data instances into 
groups based on their similarity to each other (Gama 2010). 
Intuitively, instances within a cluster are more similar to 
each other than to other instances belonging to another 
cluster  (Jain et  al. 1999; Zubaroglu and Atalay 2021). 
The objective of clustering algorithms is to detect these 
underlying characteristics of the instances that make each 
cluster unique. Traditional clustering algorithms, such as 
k-means (Lloyd 1982), require the entire dataset to be avail-
able. In data stream clustering, the data arrives incrementally 
in such a high quantity and pace that traditional clustering 
methods cannot cope with (Gama 2010).

In the evolving data stream scenario, we have a con-
tinuous data stream that contains changes over time. These 
changes cause traditional offline models to become obsolete 
over time as the new data no longer conforms to how the 
model has been trained. Incremental clustering algorithms, 
such as the one introduced by (Lughofer 2008), are one 
way to address the problem of evolving data streams. These 
algorithms process elements on a step-wise basis and injects 
them into the existing clustering solution, updating the clus-
ters by merging or splitting if needed.

Many applications do, however, not necessarily need 
such rapid adaptations given by incremental clustering algo-
rithms. Instead, by approaching the data stream segmentally, 
it is possible to view how the data is changing over time 
directly. For example, electricity providers can identify if 
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and how the electricity consumption trend has altered in 
a single household, neighborhood, or an entire city, and 
determine if any remediation is required. Likewise, an online 
retailer can identify consumer shopping trends and how they 
change over time. When an overarching view of how the data 
aligns with previous structures and how it changes over time 
is desirable, there is a lesser need for direct updates to the 
clustering models.

In this study, we propose a novel evolutionary cluster-
ing algorithm capable of modeling data streams containing 
evolving data, entitled EvolveCluster, a continuation of our 
previous work (Boeva and Nordahl 2019). Instead of pro-
cessing elements individually, we collect data over a defined 
period (creating segments) to trace how the data evolves. 
Two similar approaches have been identified to compare 
and evaluate the proposed algorithm, namely PivotBiClus-
ter (Ailon et al. 2012) and Split-Merge Evolutionary Clus-
tering (Boeva et al. 2019). Both these algorithms address 
the evolving data stream scenario by dividing the data into 
segments. In contrast to EvolveCluster, PivotBiCluster and 
Split-Merge Clustering map previous clustered data seg-
ments to fit with the newly arrived data segment. Both these 
algorithms combine the current data segment with the previ-
ous one by identifying similarities between the clusters from 
the two segments. However, the main drawback with both 
PivotBiCluster and Split-Merge Clustering is that they both 
require each data segment to be clustered in advance.

Our main contributions are as follows:

– We introduce a new algorithm, entitled EvolveCluster, 
that is especially targeted at evolving data streams. The 
design of the algorithm makes it easy to understand 
how trends and patterns appear in the data segments 
(Sect. 4.2).

– We provide a thorough analysis of the computational 
complexity of the proposed algorithm (Sect. 4.3).

– We evaluate the performance of EvolveCluster, PivotBi-
Cluster, and Split-Merge Clustering, and we identify and 
discuss their strengths and weaknesses (Sects. 6 and 7).

2  Background

In this section we provide the necessary background infor-
mation. First a description of clustering analysis is pro-
vided, with a specific definition of k-medoids. We continue 
by introducing concept drift, dissimilarity measures, and 
conclude this section with an explanation of evaluation and 
validation measures.

2.1  Clustering algorithms

Clustering algorithms are designed to identify an under-
lying structure of data and use the detected relationships 
within the structure to group the data points into distinct 
groups. These algorithms usually decide upon themselves 
how to divide the data into subgroups, an unsupervised 
approach to increase knowledge about the data. There 
are numerous ways of approaching this task and we can 
group them into five major categories: density-based, grid-
based, hierarchical, model-based, and partitioning algo-
rithms (Berkhin 2006). This study focuses on partitioning 
algorithms due to the proposed evolutionary clustering 
algorithms characteristics (see Sect. 4).

Partitioning algorithms differ from the other algorithm 
types in their need to define the number of clusters in 
advance. The number of clusters, usually denoted as k, is 
a parameter given to the algorithms when they are initial-
ized. But, identifying an appropriate k in advance is not 
easy. A common approach to identify a suitable k is having 
the algorithm execute multiple times with an increasing k 
value. More sophisticated methods exist, where the data 
is analyzed in advance with an initialization algorithm 
that estimates how many clusters are present in the data-
set (Arthur and Vassilvitskii 2006). These initialization 
algorithms, however, do not promise to produce an optimal 
solution.

One of the most prolific examples of a partitioning 
algorithm is the k-means algorithm. k-means starts by 
assigning k initial cluster centroids, either randomly or by 
an initialization algorithm. All data points are distributed 
into each cluster based on their distance to the centroids. 
The solution is refined by first electing a new cluster cen-
troid, based on the mean values of each data object in 
the cluster, and then redistributing the data points accord-
ingly. k-means refines the solution until changes are no 
longer made or until a maximum limit of iterations has 
been reached.

k-medoids, or Partitioning Around Medoids  (Vinod 
1969), is similar to k-means and generally seen as a sister 
algorithm. k-medoids, however, use actual data points as 
cluster centroids instead of creating synthetic centroids. 
This approach makes the algorithm more robust than 
k-means, being less susceptible to noise and outliers.
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2.2  Concept drift

One of the phenomenons present in data streams, espe-
cially in evolving data streams, is how the data changes 
and evolves. This non-stationarity of data over time 
is referred to as concept drift  (Khamassi et  al. 2018). 
Depending on the data and how it changes over time, dif-
ferent types of concept drifts may exist in the streams. 
Wadewale and Desai (2015) divided concept drift in six 
categories: sudden, incremental, gradual, recurring, blip, 
and noise. Sudden concept drifts are abrupt changes to the 
data, while incremental and gradual drifts happen more 
slowly. A recurring drift is a sudden, gradual, or incre-
mental drift that happens periodically. Blip and noise are 
defined as outliers and random instances that should be 
filtered out, respectively.

Concept drift is a crucial aspect of learning from evolv-
ing data streams. As the data evolves, the algorithm needs 
to be capable of adapting and continuously learn about the 
underlying data structure to model it correctly. In addition to 
our comparative experiments (Sects. 6.1–6.3), we perform 
an additional set of experiments to focus solely on Evolve-
Cluster’s ability to model data streams where concept drift 
is present (see Sect. 6.4).

2.3  Dissimilarity measures

Calculating the distance, or dissimilarity, between two 
objects is a requirement to enable the use of distance-based 
clustering algorithms such as k-medoids  (Vinod 1969). 
These measures provide a numerical value that indicates 
how dissimilar or distant two data objects are. Numerous 
variants of measures exist, and their usage depends on the 
data itself. Two of the most common measures are the L1 
and L2 , commonly referred to as Manhattan and Euclidean 
distance (ED) (Wang et al. 2013), respectively. These two 
measures are relatively simple and tend to be very effective 
when the dataset has a lower dimensionality.

Based on the application, a variety of dissimilarity meas-
ures exist. Concerns such as dimensionality, computational 
efforts, type of data, etc., factor in choosing the meas-
ure (Shirkhorshidi et al. 2015). For instance, an electricity 
consumption dataset is a time series dataset. If the shape of 
the consumption, i.e., behavior, is desired, a measure such 
as DTW (Sakoe and Chiba 1978) is an eligible candidate 
measure. As an elastic measure, DTW could identify simi-
lar behaviors that occur at different times of day as closely 
related. If instead a strict measure was used, such as ED, 
those similar behaviors would likely not be identified as 
similar. However, if there was a concern that the behaviors 

should be performed at the exact time and place each day 
to be identified as similar, ED would be a better choice of 
measure Nordahl et al. (2019).

The datasets used in this study vary quite distinctively in 
their type and number of data points. None of them, how-
ever, is considered to be a high-dimensional dataset. Thus, 
we decided to use ED (Wang et al. 2013) on our datasets to 
focus on the algorithms and their properties. ED is defined 
as follows

where q and p are two data vectors consisting of n-dimen-
sions and pi and qi are individual points in p and q, 
respectively.

2.4  Cluster validation measures

The data mining literature provides a wide range of differ-
ent cluster validation measures, which are broadly divided 
into two major categories: external and internal (Jain and 
Dubes 1988). External validation measures have the benefit 
of providing an independent assessment of clustering qual-
ity, evaluating the clustering results with respect to a pre-
specified structure. Within the external evaluation, there are 
two distinct classes of measures: unary and binary (Handl 
et al. 2005). Unary measures often take a clustering solu-
tion as input and compare it against the ground truth. The 
clustering solution can be evaluated with regard to both 
the purity and the completeness of the clusters. F 1 is one 
example of such a validation measure (Chinchor 1992). In 
addition, to unary measures, a number of indices that assess 
the consensus between two partitioning solutions, based on 
the pairwise assignment of data points, are provided in the 
data mining litterature. Most of these indices are symmetric, 
making them well-suited for assessing the similarity of two 
clustering solutions, in which the Jaccard Index is a good 
example of (Jaccard 1912).

Internal validation techniques, on the other hand, avoid 
the need for using such additional knowledge. They evalu-
ate the clustering solutions based upon the same informa-
tion that were used to create the clusters, enabling them to 
evaluate the quality of the produced clustering solutions in 
different ways. Internal measures can be divided into four 
categories based on how they evaluate clustering solutions: 
compactness, separation, connectedness, and stability of 
the cluster partitions. A detailed overview of different types 

(1)ED(q, p) =

√√√√
n∑

i=0

(
qi − pi

)2
,
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of validation measures is available in (Halkidi et al. 2001; 
Vendramin et al. 2010).

Traditionally, many researchers working in data stream 
clustering apply well known validation measures to evalu-
ate the clustering solutions produced by their data stream 
clustering algorithms  (Silva et al. 2013), such as Sum 
of Squared Errors (SSE) and purity. Specific validation 
measures do, however, exist in the realm of data stream 
clustering. In 2011, Cluster Mapping Measure (CMM) is 
proposed as an effective measure for data stream cluster-
ing (Kremer et al. 2011). CMM is a combination score of 
missed objects, misplaced objects, and noise inclusion, 
and is based on the ground truth. More recently, several 
adaptations of well-known validation measures have been 
proposed, including Silhouette Index  (Da  Silva et  al. 
2020), Davies-Bouldin (Da Silva et al. 2020), and Xie-
Beni (Moshtaghi et al. 2019). All of the aforementioned 
measures are, however, designed for incremental clus-
tering algorithms. The algorithm proposed in this paper 
divides the stream into fixed-sized segments and separates 
the segments to analyze and evaluate them individually. 
Due to the algorithm’s intended application and design, 
that a stream is divided into segments, it can be argued 
that it is not necessary to adopt the incremental validation 
measures. EvolveCluster does not process elements incre-
mentally. Instead, each segment is statically clustered, 
which allows us to utilize traditional validation measures 
on each segment. Furthermore, as the algorithm only oper-
ates on entire segments and not individual instances, there 
is no directly applicable way to validate with these types 
of measures.

In the coming sub-sections, we describe and define the 
evaluation measures we apply in the study. We use two 
external (F1-measure and Jaccard Index) and two inter-
nal (Silhouette Index and Average Intra-Cluster Distance) 
cluster validation measures to the clustering solutions gen-
erated by our experiments.

2.4.1  F
1
‑measure

F1 is the harmonic mean of the precision and recall val-
ues of each cluster. Consider two clustering solutions, 
A = {A1,… ,Ak} and B = {B1,… ,Bl} , of the same dataset. 
We define A as the known partitioning of the dataset and 
B as the partitioning produced by the applied clustering 
algorithm. We then define the F 1 for a cluster Bj as:

(2)F1

(
Bj

)
=

2|Ai ∩ Bj|
|Ai| + |Bj|

,

where Ai is the cluster containing the maximum number of 
objects from Bj.

To evaluate the overall F 1 score for the clustering solu-
tion B, two common approaches are used, micro and macro 
average. Both versions are similar, but the macro average 
sees all classes as equal while the micro average corrects the 
score by each individual class’s frequency. In this study, the 
datasets used (see Sect. 5.1.1) have a fairly even distribution 
of the corresponding classes. Therefore, the macro F 1 is used 
and for the clustering solution B it is defined as:

 where l is the number of clusters within B. The F 1 score has 
a value between 0 and 1, with 1 indicating a perfect score.

2.4.2  Jaccard Index

For evaluating the stability of a clustering solution, Jaccard 
Index (JI) is a suitable candidate. Given two clustering solu-
tions produced from the same dataset, A and B, we define JI 
between A and B as follows:

where |A ∩ B| is the number of data points with the same 
class in the same clusters in A and B, and |A ∪ B| is the total 
number of data points in the same clusters in A and B. JI 
ranges from 0 to 1, where a higher value indicates a higher 
similarity between the clustering solutions.

2.4.3  Silhouette Index

Silhouette Index (SI) is a cluster validity index that is 
used to determine the quality of any clustering solution 
C = {C1,… ,Ck} . It produces a score that is based on the 
compactness of each cluster and the separation between the 
clusters (Rousseeuw 1987). SI for a clustering solution C is 
defined as:

where ai is the average distance from object i to the other 
objects in its cluster and bi is the minimum average distance 
from i to the objects of the other clusters. SI ranges from 
-1 to 1, where a value closer to 1 indicates a better cluster-
ing solution, and a value on the negative side of the range 

(3)F1(B) =
1

l

l∑

j=1

F(Bj),

(4)J(A,B) =
|A ∩ B|
|A ∪ B|

,

(5)SI(C) =
1

m

m∑

i=1

bi − ai

max
(
ai, bi

) ,
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indicate that there are misplaced data points within the clus-
tering solution.

2.4.4  Average Intra‑Cluster Distance

Similarly to SI, the Average Intra-Cluster Distance (IC-av) 
measures how compact the produced clusters are. In contrast 
to SI, it does not assume a spherical shape of the produced 
clusters  (Baya and Granitto 2013). Instead of calculating 
the radius around the clusters, IC-av produces a Minimum 
Spanning Tree (MST) of all data points based on the distance 
between the objects in the dataset. The edges containing the 
distance between the data points in the tree are then used to 
determine the compactness of the clusters in the clustering 
solution. For a particular clustering solution C = {C1,… ,Ck} , 
IC-av is defined as:

where nr  is the number of objects in cluster Cr 
( r = 1, 2,… , k ) and dij is maximum edge distance which 
represents the longest edge in the path joining objects i and 
j in the MST. IC-av produces a score between zero and the 
maximum value of the edges in the MST and should be 
minimized.

3  Related work

In this section, we provide a review of studies related to our 
work. At the end of the section, we specifically review the 
two algorithms PivotBiCluster and Split-Merge Evolution-
ary Clustering.

3.1  Evolving data streams

The data stream clustering scenario differs from traditional 
clustering because the data is usually not available in its 
entirety. Additionally, the data in the stream arrives at such 
a rapid pace and in large quantities that it is impossible to 
keep the data in the main memory (Gama 2010; Bifet et al. 
2010b). Traditional algorithms, such as k-means (Lloyd 
1982) and DBSCAN (Ester et al. 1996), rely on the entire 
dataset being present. A naive approach to apply traditional 
algorithms on data streams would be to re-cluster the entire 
solution at each increment. However, this approach is unfea-
sible both in regards to time constraints and the resources 
needed by the algorithms (Mousavi et al. 2015; Zubaroglu 
and Atalay 2021).

(6)IC-av (C) =

k∑

r=1

1

nr

∑

i,j∈Cr

d2
ij
,

In addition to the quantity and rapidness of data in data 
streams, evolving data streams have the additional dynamics 
of non-stationarity data over time, also known as concept 
drift (Khamassi et al. 2018). Multiple approaches have been 
investigated to capture the dynamic aspects of evolving data 
streams, including  (O’callaghan et al. 2002; Gama et al. 
2011; Kriegel et al. 2011; Ghesmoune et al. 2015; Zhou 
et al. 2008; Lühr and Lazarescu 2009; Angelov and Zhou 
2008). More specifically, Lughofer (2008) proposes an incre-
mental algorithm, where each increment causes the affected 
cluster to be split and merged separately, which was further 
developed in (Lughofer 2012). Similarly, (Aaron et al. 2014) 
extends the k-means algorithm to a dynamic incremental 
clustering algorithm. A common idea for capturing evolving 
data streams’ dynamic nature is to use incremental algo-
rithms and add functionality to modify clusters by splitting 
and merging (Aaron et al. 2014; Lühr and Lazarescu 2009). 
In general, these algorithms are divided into two compo-
nents: Online and Offline (Zubaroglu and Atalay 2021). The 
online component of the algorithms produces micro clusters 
that stay up to date which each increment of data objects 
that arrives, and the offline component runs periodically 
to finalize the clustering solution based on the produced 
microclusters.

3.2  Window based models

Generally, within data stream clustering, especially in con-
trast to traditional clustering, it can be more efficient to 
focus on the recent data instead of the entire stream. Several 
window models exist, but the following three are the most 
popular: damped window, sliding window, and landmark 
window (Zubaroglu and Atalay 2021). The damped win-
dow models approach the data limitation by incorporating 
a weight factor when the data is processed. No object is 
removed from the window, but older the data objects have 
lower importance for the model. It is usually performed 
by a negative exponential function, such as f (t) = 2−�t . 
SNCStream (Barddal et al. 2015) and its extension SNC-
Stream+ (Barddal et al. 2016) operate in a damped win-
dow scenario in a single pass manner. They are based on 
social network theory and use homophily to identify non-
hyper spherical clusters. Similarly, pcStream (Mirsky et al. 
2015) is also defined to operate in a damped window mode. 
pcStream dynamically detects and manages temporal con-
texts by fusing sensor data streams to infer the present con-
cepts and detects new concepts as they emerge.

The sliding window models approach the data stream in a 
similar way as damped windows but can be seen as stricter. 
Instead of having a decaying function, the sliding window 
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is of a fixed size, and all objects within the sliding window 
have the same level of importance. When an object is added 
at one end of the window, another object is removed at the 
other end of the window, providing a window sliding over 
the stream.

DenStream  (Cao et  al. 2006) and its extension 
HDDStream (Ntoutsi et al. 2012), that handles high-dimen-
sional data, follow an online-offline design, and are based on 
the DBSCAN clustering algorithm. The online procedures 
of the algorithms produce micro-clusters based on the den-
sity, which are later fed to the offline procedures, where the 
real clusters are created. WCDS (Cardoso et al. 2017) also 
follows the online-offline approach, creating micro-clusters 
in the online phase, but the offline phase was based on an 
agglomerative clustering algorithm to define its top-level 
clusters.

In contrast, landmark window models divide the data 
by assigning fixed landmarks where all data between two 
landmarks is a window. When a landmark is reached and a 
window ends, the succeeding window starts from that land-
mark point. A typical approach for landmark window-based 
clustering algorithms is to use the divided data stream to 
cluster them separately and use the produced centroids for 
that segment as representation, usually with partition-based 
algorithms.

The Stream framework was one of the earliest methods for 
stream clustering (Guha and Mishra 2016). The data stream 
is divided into segments, and each segment is clustered by 
k-median. The produced cluster centers from the segments 
are added into buckets representing a prototype array, end-
ing up with ki medians, where i is the number of clustered 
segments. Whenever the number of stored medians surpass 
a parameter m, k-medians is run upon the prototype array 
to produce a median of medians situation. Stream LSearch 
is an extension of the Stream method, where a more effec-
tive subroutine for the underlying k-median was introduced 
called LSearch (O’callaghan et al. 2002). In 2015, a stream 
adaptation called StreamKM++ (Anderson and Koh 2015) 
was proposed to the kmeans++ algorithms. StreamKM++ 
creates a coreset tree by sampling a subset of the segment 
and solves the optimization problem on that subset without 
touching the rest of the segment. These sets are then stored 
in buffers that are merged whenever a new segment is clus-
tered. StreamXM is a continuation of StreamKM++ and 
operates similarly, with Xmeans as the underlying clustering 
algorithm (Anderson and Koh 2015).

DUCstream also divides the stream into segments that are 
manageable for the system memory, but its underlying struc-
ture is instead a density-based algorithm (Gao et al. 2005). 
DUCstream partitions the data space in units and map the 

incoming objects in the units; the more mapped objects to 
a unit, the denser it is. These dense units are then used to 
perform clustering.

None of the methods mentioned above are explicitly tai-
lored for our specified problem. They aim to model the entire 
stream with a single clustering solution as best as possible. 
We instead intend to divide the stream into segments, clus-
ter them separately, and use the clustered segments to see 
how the stream evolves. With clustering solutions produced 
of each segment, it is easier to analyze the data between 
segments and trace how clusters have remained, changed, 
disappeared, or appeared. We have identified two approaches 
that similarly address the data stream clustering problem, 
namely PivotBiCluster (Ailon et al. 2012) and Split-Merge 
Evolutionary Clustering algorithms (Boeva et al. 2019).

3.3  PivotBiCluster

The first algorithm we compare with is PivotBiClus-
ter (Ailon et al. 2012), an algorithm related to Bipartite Cor-
relation Clustering (BCC) (Amit 2004). BCC builds upon 
the notion of taking two clustering solutions and combine 
them into a larger solution. Either by directly combining two 
clusters from different solutions or dividing a cluster from 
one solution into several clusters in the other solution. The 
combination is decided upon the correlation between the 
clusters of the different clustering solutions.

Referring to our problem statement, located in Sect. 4.1, 
PivotBiCluster assumes two data segments have been clustered 
beforehand, e.g., D0 and D1 , thus producing C0 and C1 . These 
two clustering solutions ( C0 and C1 ) are then given to PivotBi-
Cluster, which tries to combine them together, creating C′

1
 , by 

merging clusters from each solution based on how similar they 
are to each other. The correlation clustering can be applied 
over and over; thus, in the formalized problem statement, the 
PivotBiCluster continues to create a large clustering solution 
by using C′

1
 in combination with C2 to produce C′

2

One of the drawbacks of the PivotBiCluster algorithm is 
a lack of the ability to split a cluster into several others in 
the other clustering solutions. This drawback was the pri-
mary motivation of the Split-Merge Evolutionary Clustering 
algorithm.

3.4  Split‑merge evolutionary clustering

The Split-Merge Evolutionary Clustering (Split-Merge Clus-
tering) algorithm builds upon the idea present in BCC clus-
tering algorithms, with the addition of splitting a cluster into 
multiple clusters in the other clustering solution (Boeva et al. 
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2019). This means that if a larger cluster exists within one 
of the clustering solutions, it can be split up into multiple 
clusters in the algorithm’s output. Similar to the approach 
of PivotBiCluster, the Split-Merge Clustering algorithm also 
assumes the incoming data from the data stream D is clus-
tered in advance. Additionally, just as the PivotBiCluster, the 
clustering can either occur continuously, thus create a final 
large clustering solution that contains all the data elements 
from the dataset. Another option can be to take intermediary 
steps to filter out the data from the previous segment(s) to 
create a more reflecting model on the present type of data 
in the data stream.

One of the significant benefits of Split-Merge Clustering, 
compared to PivotBiCluster, is the splitting of clusters. The 
authors claim that with that addition, the algorithm is less 
sensitive to under- and over-clustering of each data segment, 
as the clusters are now more easily modified over time.

In contrast to our proposed algorithm, which we present 
in the following section, the Split-Merge Clustering algo-
rithm links the old and new clustering solutions together. 
Depending on what type of data is being analyzed, this can 
be counter-productive if the clustering aims not to solely 
focus on current trends in the data.

4  An evolutionary clustering algorithm

4.1  Problem statement

Let us formalize the evolving data scenario we aim to 
address. Assume that D is a continuous stream of data, and 
a vector of features represents each data point. D0 is the ini-
tial data segment which has been partitioned into k clusters, 

C0 = {C00,… ,C0k} . Additionally, D1,… ,Dt , where t → ∞ , 
are continuous segments of data in the stream to be parti-
tioned. Our objective is to produce a clustering solution, or 
clustering solutions, modeling how the data evolves.

4.2  EvolveCluster: an evolutionary clustering 
algorithm

In this section, we formally describe the proposed sequen-
tial partitioning algorithm, entitled EvolveCluster. The main 
idea of EvolveCluster is to allow a continuous data behavior 
to be easily modeled, by incorporating gained knowledge 
from the previous data segments, in the form of the cluster 
centroids, to influence the clustering of the new data seg-
ment. Using previous centroids, we can trace how the clus-
ters evolve as the clusters are related over the data segments. 
Likewise, with each segment being clustered individually, 
it is easy to identify reoccurring trends between segments 
and changes in the data. The algorithm idea is schematically 
illustrated in Fig. 1.

Similar to both PivotBiCluster and Split-Merge Cluster-
ing, EvolveCluster divides the data stream into individual 
data segments. Likewise, the initialization of EvolveCluster 
requires the first data segment to be clustered in advance. 
The remaining data segments are, however, clustered within 
EvolveCluster. Each segment is sequentially clustered, using 
a partitioning algorithm, with the aid of the cluster centroids 
(seeds) from the previous segment. EvolveCluster assumes 
the new data segment contains at least some of the structure 
from the previous segment by incorporating the clustering 
structure from the previous segment. The following opera-
tions are conducted on each new data segment:

– The data points of the segment is initially clustered by 
seeding with the cluster centroids of the previous seg-
ment;

– The old centroids are removed and any empty clusters are 
deleted;

– New centroids for the clusters are elected, and the clus-
tering solution is refined.

The refined clustering solution undergoes a “trial-and-error” 
approach to detect if any clusters should be split into two 
by applying a 2-means clustering algorithm on a cluster 
basis. The 2-means clustering algorithm is initialized with 
the two data points in the cluster that exhibit the furthest 
distance to each other. If the clustering solution containing 
the split clusters is deemed the better clustering solution, by 
a validation measure, it is kept. Otherwise, it is discarded. 
The algorithmic steps conducted at each data segment are 
defined in Algorithm 1.
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Fig. 1  A schematic illustration of the proposed EvolveCluster. D i  
represents data segments at time ti , C ij represents clusters in cluster-
ing solutions C i  of data segments Di , and t represents individual time 
segments
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Algorithm 1: EvolveCluster
Input : Data segment Dt, Centroids {c1, . . . , ck} ∈ Ct−1
Output: Clustering solution Ct

1 Ct ← InitialPartition(Dt, c1, . . . , ck)
2 Ct ← RefineSolution(Ct)
3 S ← SI(Ct)
4 while SplitPerformed = True do
5 SplitPerformed ← False
6 for Cti ∈ Ct do
7 C′

t ← Split(Ct, Cti)
8 if S+ τ < SI(C′

t) then
9 S ← SI(C′

t)
10 Ct ← C′

t
11 SplitPerformed ← True
12 break
13 end
14 end
15 end

4.3  Computational complexity

In this section, we examine the computational costs of 
the clustering and splitting operations of the proposed 
algorithm. Depending on what underlying clustering algo-
rithm is used, the computational complexity will differ. 
The approach proposed in this study uses k-medoids, a 
distance based partitioning algorithm. k-medoids requires 
a distance matrix of size n × n to be computed, where n 
is the number of elements. The distance matrix occupies 
the majority of both the computations and memory con-
sumption of the algorithm, being a complexity of O

(
n2d

)
 

and O
(
n2
)
 , respectively, where d is the feature space 

dimension.
In this study, we propose the use of k-medoids whose 

complexity has been thoroughly studied (Schubert and 
Rousseeuw 2019). We can divide k-medoids into two 
parts: i) Initialization and ii) Refinement. The initialization 
according to the original implementation, which opts to 
identify a beneficial starting point, generates a complexity 
of O

(
n2k

)
 where k is the number of clusters. When initial 

medoids are provided, or randomly chosen, the complexity 
instead becomes O(nk) . However, the refinement process 
remains the same as originally defined, generating a com-
plexity of O((n − k)2ki) , where i is the number of itera-
tions performed in the refinement. This we can simplify 
to O

(
n2ki

)
 as k << n.

Here, we present the computational complexity of a 
single iteration of EvolveCluster. Suppose n is the number 
of data instances in the entire dataset and n′ is the num-
ber of instances in each data segment, where n′ << n . The 
initial clustering occurs in two steps, InitialPartition and 
RefineSolution, as defined in Algorithm 1 (steps one and 

two, respectively). InitialPartition assigns each data object 
in the current segment to the closest centroid, removes the 
initial centroids, and deletes any empty clusters, with a com-
putational cost of O(n�k + k + k) → O(n�k) . RefineSolution 
is a direct implementation of the original k-medoids algo-
rithm, giving a complexity of O(n�2ki) . The initial clustering 
of EvolveCluster then becomes O(n�k + n�2ki) , which can be 
simplified to O(n�2ki).

The split criterion of EvolveCluster is calculated once 
outside the loop and once for every time a split is performed 
inside the loop. In the proposed approach, we use the SI 
as our measure for the split criterion, which has a compu-
tational complexity of O

(
2n� + n�2

)
 . EvolveCluster splits 

a cluster by first identifying the two elements that are the 
furthest apart, O(n�2) . k-medoids is then used with k = 2 
with the two identified elements as initial centroids, i.e. 
O(n�k + n�2ki) . A single iteration of the splitting loop then 
becomes O(n�2 + n�k + n�2ki + 2n� + n�2) , which we can sim-
plify to O(n�2ki).

As each cluster in the produced clustering solution Ct 
is split at least once, the lower bound of iterations for the 
splitting part of EvolveCluster becomes k times. This gives 
the lower bound for splitting to be O(k(n�2ki)) → O(n�2k2i) . 
The upper bound, on the other hand, is dramatically higher. 
In the worst case, a split is performed in every iteration 
which causes the final clustering solution to consist solely 
by singleton clusters, i.e., n′ iterations. The upper bound 
then becomes O(n�(n�2ki)) → O(n�3ki) . Finally, the total 
complexity for each increment, with the inclusion of the 
distance matrix calculation, of the EvolveCluster algorithm 
is O(n�2ki + n�2k2i + n�2d) → O(n�2(k2i + ki + d)) → O(n�2(k2i + d)) . If 
we include the upper bound calculation, the complexity of 
EvolveCluster becomes O(n�2ki + n�3ki + n�2d) → O(n�3ki).
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Similarly to EvolveCluster, the Evolutionary Split-Merge 
Clustering bases its complexity on the underlying cluster-
ing algorithm (Boeva et al. 2019). Evolutionary Split-Merge 
Clustering adds the additional computational overhead 
O((k� + k�)n�) . In combination with k-medoids, its complex-
itiy becomes O((k� + k�)n� + n�2ki) → O(n�2ki) , which is in 
line with the produced lower bound complexity of Evolve-
Cluster. The auhors of PivotBiCluster, on the contrary, have 
not proposed their complexity calculations in the clustering 
scenario (Ailon et al. 2012). Thus, we have no direct com-
parisons to perform.

5  Data and experimental designs

We perform two sets of experiments to investigate the 
effectiveness of EvolveCluster. The first experiment com-
pares EvolveCluster and two similar clustering algorithms 
on three different datasets to analyze their differences and 
performances. In our second experiment, we analyze how 
EvolveCluster handles different concept drift scenarios by 
generating a synthetic data stream.

5.1  Experiment 1: comparative analysis

5.1.1  Data

We evaluate and compare the performance of the proposed 
EvolveCluster algorithn to two other clustering algorithms 
(PivotBiCluster and Split-Merge Clustering) on three differ-
ent datasets, explained in Table 1. The first is the S1 data-
set, a 2-dimensional synthetic dataset created by the authors 
of (Fränti and Virmajoki 2006). This dataset is chosen to 
investigate the algorithms ability to identify new clusters as 
they arrive in the data stream, and how they manage with 
regard to clustering a constant type of behavior over time.

The second dataset is a subset of the Covertype dataset, 
available at the UCI repository (Hettich and Bay 1999). The 
motivation behind the use of this dataset is mainly to have 
a direct comparison to both the PivotBiCluster and Split-
Merge Clustering algorithms, as the authors of the latter 
algorithm have performed experiments upon it in their 

paper (Boeva et al. 2019). However, it is also chosen due to 
its larger number of data points in combination with a higher 
dimensionality of its features compared to the S1 dataset.

Finally, the third dataset is a real world electricity con-
sumption dataset, the Domestic Electrical Load Metering, 
Hourly Data (DELMH) (Toussaint 2019). DELMH contains 
consumption from a large number of households and meter-
ing stations in South Africa covering the period from 1994 
to 2014, with measurements taken up to every 5 minutes. 
It is worth noting that the single household with the most 
prolonged consumption period amounts to roughly two years 
worth of consumption. This type of dataset is one of the 
main target areas for our proposed algorithm.

All information about the used datasets in their original 
form is presented in Table 1.

5.1.2  Data pre‑processing

5.1.2.1 S1 dataset The S1 dataset is divided into five equal 
parts, each part consisting of 1’000 elements. We do, how-
ever, create two distinct experimental datasets from the S1 
dataset. The first dataset keeps the original format where 
each cluster appears one by one in order, but the other data-
set is modified such that all data segments contain the same 
ratio of all clusters (see below). The two features are normal-
ized in the [0 − 1] range by a Min-Max feature scaling. Each 
feature value is subtracted by the minimum value of that 
feature ( Xmin ), and then divided by the difference between 
the minimum and maximum value ( Xmax ) of the feature, i.e.,

with the S1 dataset, we want to allow the algorithms to 
showcase how they handle two aspects of data stream clus-
tering. The first is to discover new clusters as they appear in 
the data. By keeping the S1 dataset in its original state, each 
cluster appears in the data stream one after another. Between 
each segment in the original dataset, 2 to 3 clusters disap-
pear, and 2 to 3 new clusters appear.

The second aspect is to model a continuous set of behav-
iors in the data stream over time. We simulate this aspect by 
dividing the data points in each cluster evenly between each 
segment. Thus, 20% of each clusters’ data points are located 
in D0 . D1 consists of the next 20% appear and so on. From 
here on and forward, we denote this dataset as the continu-
ous S1 dataset.

5.1.2.2 Covertype dataset  To mimic the experiments of 
the authors of the Split-Merge Evolutionary Clustering 
algorithm, we perform the same steps of pre-processing and 
segmentation of the Covertype Dataset (Boeva et al. 2019). 
A subset of 50’000 elements is randomly chosen out of the 

x� =
x − Xmin

Xmax − Xmin

.

Table 1  Information regarding number of features and instances of 
each dataset in their original form. The number of instances in the 
DELMH dataset are individual measurements from 71 up to 2940 
concurrent households over 21 years, varying between 1 measure-
ment up to 12076 per household

Dataset No. features No. instances

S1 2 5000
Covertype 54 581012
DELMH 1 3341726
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581’012 and 14 out of the 54 features is chosen, excluding 
all binary features regarding the soil type. Each feature is 
standardized using the z-score, where each feature is sub-
tracted by their mean value ( ̄x ) and divided by the standard 
deviation ( � ), i.e.

The 50’000 data points are divided into 2 segments in a 
70-30 split, creating D0 with 35’000 elements and D1 with 
15’000 elements.

5.1.2.3 DELMH dataset  For the DELMH dataset, we first 
divide all available measurements into their correspond-
ing households. All measurements are combined into daily 
profiles, such that each daily profile contains measurements 
from 00:00 to 23:59. Every daily profile consists of 24 data 
points, where each data point in the profile represents the 
aggregated consumption of each hour. If any profile con-
tains a measure that is indicated to be invalid, the entire daily 
profile is dismissed for further use. All profiles undergo the 
same z-score standardization as mentioned above for the 
Covertype dataset. However, instead of applying it on a 
feature level, we apply it to each individual profile. Each 
standardized profile represents the shape of the electricity 
consumption and disregards the actual amplitude of the 
electricity consumption.

We identify the 10 households with the largest number 
of daily profiles, and choose one of them to represent the 
use case for our algorithm. The chosen household consists 
of 496 daily profiles after the pre-processing stage, starting 
from 1997-12-31 and ending on 1999-05-06. The final 496 
profiles are divided into 5 segments, where the first seg-
ment ( D0 ) contains 198 elements, corresponding to 40% of 
the number of profiles. The remaining 4 segments contain 
74-75 profiles each, representing 15% of the total number 
of profiles.

A summary of all dataset information after the pre-pro-
cessing and modification is located in Table 2.

5.2  Experiment 2: concept drift analysis

In the second experiment, we specifically investigate how 
EvolveCluster performs in an evolving data stream scenario. 

z =
x − x̄

𝜎
.

This experiment is conducted on generated synthetic data to 
make sure a ground truth is available, the data contains con-
cept drift, and when the concept drifts occur. We created a 
Radial Basis Function Generator (RBFGenerator) based on 
the implementations available at MOA (Bifet et al. 2010a) 
and scikit-multiflow (Montiel et al. 2018). Both MOA and 
scikit-multiflow implementations provide evolving data 
streams that contain a constant drift of clusters, where each 
cluster centroid moves as time progress. However, scikit-
multiflow’s implementation does not contain any creation 
or deletion of clusters. Conversely, MOA includes options 
of specific events, such as cluster creation and deletion, but 
cannot export its stream if more than one additional cluster 
is created in the stream. Thus, we have created an RBFGen-
erator that produces evolving data streams with no limita-
tion on the functionalities mentioned.

The produced data streams consist of 10’000 data points 
with 2 features. Each stream is initialized with the same ran-
dom seed but has different seeds for generating data points 
and cluster events. When 2’500 data points have been pro-
duced, an event occurs in the stream. Additional events then 
occur after each 2’000th data point, i.e. at 4’500, 6’500, 
and 8’500. An event is randomly chosen out of two options, 
creation or deletion. The streams begin with 5 clusters and 
are allowed to vary between 2 and 8. The cluster centers 
are limited to the [0-1] domain in both features. The cluster 
centers’ speed is randomly chosen but limited to 0.0001 per 
instance created in the stream. Similarly, the radius of each 
cluster is randomly chosen but limited to be 0.02 ± 0.005.

The data streams are divided into five segments each, cre-
ating data segments D0,D1,D2,D3,D4 . Each segment from 
D1 and onwards contains an event. To initialize EvolveClus-
ter on the produced data stream, we used the cluster labels 
given by the RBFGenerator on the D0 segments and then 
calculated the centermost point (i.e., medoid) in each cluster 
to use as cluster centers.

5.3  Evaluation and validation

In this study, we combine both internal and external cluster 
validation measures to assess the results from both experi-
ments. In the first experiment, both the Covertype and the S1 
datasets have ground truth labels, allowing us to use external 
validation measures. For these two datasets, we have used 

Table 2  Information regarding 
number of features and data 
points in each data segment of 
all datasets after pre-processing

Dataset No. features No. instances

D0 D1 D2 D3 D4

S1 original 2 1000 1000 1000 1000 1000
S1 continuous 2 995 1000 1000 1000 1005
Covertype 14 35000 15000 – – –
DELMH 24 198 74 75 74 75
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both the F 1 and JI measures to evaluate how the three studied 
clustering algorithms perform regarding the known structure 
of the datasets. Additionally, we apply the SI to assess the 
compactness and separation of the produced clusters. The 
same applies to the data stream we generate for the second 
experiment; thus, we apply the same validation measures 
as for Covertype and S1. The DELMH dataset in the first 
experiment, on the other hand, has no ground truth available, 
causing us to focus solely on the internal cluster evaluation 
measures. We instead apply the SI and IC-av measures to 
evaluate how good the produced clustering solutions are.

To show how the three algorithms in the first experiment 
perform over time, we calculate the evaluation metrics for 
each individual data segment of the datasets in three ways: 

1. Only the data arriving in the current segment is used for 
calculating the scores, disregarding how the old data 
segment has been altered and merged.

2. Each segment is calculated in combination with the pre-
vious data segment.

3. For some of the experiments, we also evaluate all the 
data segments up until that point in time, e.g., when we 
reach D3 , we include D0,D1 and D2 in the evaluation.

5.4  Implementation and availability

PivotBiCluster and Split-Merge clustering operate by tak-
ing existing clustering solutions and combine them into 
a larger clustering solution. Both algorithms require each 
data segment to be clustered beforehand and combine the 
produced clustering solutions to create a combined version. 
EvolveCluster, on the other hand, focuses solely on clus-
tering the current data segment and only incorporates the 
cluster centroids of the previous data segment to produce 
the next, disregarding the old clustering solution after its 
initial clustering. To compare the results of these three algo-
rithms, we have implemented two additional variations of 
the PivotBiCluster and Split-Merge Clustering algorithms. 
The first variation is implemented so that after each segment 
is clustered, data belonging to the previous data segment is 
removed, similar to the EvolveCluster algorithm. The second 

a

b

c

Fig. 2  The clustering solutions obtained on each data segment 
D0, D1, D2, D3, D4 of the original S1 dataset. The results generated 
by the three studied algorithms are depicted as follows: a EvolveClus-

ter, b Split-Merge Clustering, and c PivotBiCluster. Each color of the 
data points in the figures represents a single cluster within that seg-
ment

Table 3  Results from the 
validation measures F 1 , JI, and 
SI on the original S1 dataset, 
where previous data segments 
are discarded before evaluating, 
for all three clustering 
algorithms

D0 D1 D2 D3 D4

EvolveCluster F1 1 1 0.770 0.997 1
JI 1 1 0.681 0.993 1
SI 0.826 0.879 0.649 0.750 0.867

Split-Merge F1 1 1 1 1 1
JI 1 1 1 1 1
SI 0.826 0.879 0.848 0.747 0.867

PivotBiCluster F1 1 0.908 0.947 0.978 1
JI 1 0.856 0.909 0.958 1
SI 0.826 0.538 0.824 0.700 0.867
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variation retains the previous data segment as the clustering 
progresses but is removed before the next data segment is 
clustered.

For the first experiment, all three clustering algorithms 
are initialized using the same clustering solution C0 . Pro-
viding all algorithms with the same starting point gives us 
insight into how they produce clustering solutions for each 
data segment. For PivotBiCluster and Split-Merge Cluster-
ing, we have to cluster D1,D2,… ,Dn before using them in 
the algorithms. In the S1 and Covertype experiments, we use 
the ground truth labels in conjunction with the NearestCen-
troid classifier (Tibshirani et al. 2002) to find the centroids to 
be able to cluster C′

2
 and onwards. For DELMH, we employ 

k-medoids to do the initial clustering of C1,C2,… ,Cn . This 
initial clustering is run for 1’000 iterations for each seg-
ment and the number of clusters between 2 and 10. Each 
clustering solution is evaluated via SI and IC-av. Empiri-
cally we choose upon the produced clustering solutions as 
the input for the PivotBiCluster and Split-Merge Clustering 
algorithms. Finally, all the experiments use the Euclidean 
Distance as the dissimilarity measure.

a

b

c

Fig. 3  The clustering solutions obtained on each data segment 
D1,D2,D3,D4 of the original S1 dataset, where the previous segment 
is included. The results generated by the three studied algorithms are 

depicted as follows: a EvolveCluster, b Split-Merge Clustering, and c 
PivotBiCluster. Each color of the data points in the figures represents 
a single cluster within that segment

Table 4  Results from the validation measures F 1 , JI, and SI on the 
original S1 dataset, where the previous data segment is kept during 
evaluation, for all three clustering algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster F1 1 0.875 0.854 0.998
JI 1 0.827 0.797 0.995
SI 0.783 0.716 0.567 0.793

Split-Merge F1 0.824 0.797 0.816 0.778
JI 0.735 0.687 0.750 0.705
SI 0.313 0.365 0.129 0.103

PivotBiCluster F1 0.758 0.764 0.750 0.778
JI 0.672 0.679 0.664 0.705
SI 0.414 0.176 0.222 0.103

Table 5  Results from the 
validation measures F 1 , JI, 
and SI on the continuous 
S1 dataset, where the all 
previous data segments are 
kept during evaluation, for the 
PivotBiCluster and Split-Merge 
Clustering algorithm

D0 D0–D1 D0–D2 D0–D3 D0–D4

Split-Merge F1 1 0.824 0.660 0.760 0.691
JI 1 0.735 0.534 0.712 0.646
SI 0.826 0.313 0.121 −0.102 −0.166

PivotBiCluster F1 1 0.758 0.613 0.760 0.691
JI 1 0.672 0.564 0.712 0.646
SI 0.826 0.414 0.267 −0.102 −0.166
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All experiments and algorithms are implemented in 
Python 3.6.10 and are available for download here1.

6  Results and analysis

In this section the results from all experiments are presented 
and discussed following the order in which the datasets have 
been explained in Sect. 5.1.1.

6.1  Original S1 dataset

6.1.1  Original S1

The results from the experiment on the original S1 dataset 
are presented in Fig. 2 and Table 3. In Fig. 2, we observe that 

the EvolveCluster and Split-Merge Clustering algorithms 
are more proficient than PivotBiCluster in identifying new 
clusters when they arrive in the data stream. This is further 
strengthened in Table 3, where overall scores suggest that 
PivotBiCluster performs slightly worse compared to the 
other two algorithms. However, as it can be seen in Fig. 2a 
(under the D2 header) we observe that EvolveCluster shows a 
difficulty in merging clusters together when they are initiated 
closely together. This result is logical, since EvolveClus-
ter has no specific merge criterion or dedicated process for 
merging more than if the initial clustering of each segments 
produce empty clusters they are removed. It is also interest-
ing to notice that Split-Merge Clustering fully follows the 
true clustering of the data points, up to the point that even 
data points that are overlapping into another cluster is cor-
rectly classified.

To further investigate how the three algorithms operates, 
we include the previous data segments for each clustering 
solution as explained in Sect. 5.3. These results are presented 

a

b

c

Fig. 4  The clustering solutions obtained on each data segment 
D0, D1, D2, D3, D4 of the continuous S1 dataset. The results gen-
erated by the three studied algorithms are depicted as follows: a 

EvolveCluster, b Split-Merge Clustering, and c PivotBiCluster. Each 
color of the data points in the figures represents a single cluster 
within that segment

Table 6  Results from the 
validation measures F 1 , JI, and 
SI on the continuous S1 dataset, 
where previous data segments 
are discarded before evaluating, 
for all three clustering 
algorithms

D0 D1 D2 D3 D4

EvolveCluster F1 0.997 0.990 0.993 0.996 0.992
JI 0.994 0.980 0.986 0.992 0.984
SI 0.722 0.715 0.698 0.716 0.708

Split-Merge F1 1 1 1 1 1
JI 1 1 1 1 1
SI 0.719 0.710 0.693 0.713 0.705

PivotBiCluster F1 1 0.334 0.720 0.269 0.722
JI 1 0.213 0.670 0.158 0.672
SI 0.719 0.271 0.208 0.354 0.270

1 https:// github. com/ chris tiann ordahl/ Evolv eClus ter

https://github.com/christiannordahl/EvolveCluster
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in Fig. 3 and Table 4. It is clear that most of the structure 
from the previous data segment is lost when combining clus-
tering solutions, both by the PivotBiCluster and, especially, 
the Split-Merge Clustering algorithm. Split-Merge Cluster-
ing has a perfect score in both F 1 and JI when each segment 
is validated separately, which is to be expected. Each of the 

segments are clustered in advance and are following the 
ground truth labels from the dataset. Comparing the scores 
from the evaluation measures in Table 4, we also observe a 
significant decrease of all scores for all three algorithms. The 
drop for EvolveCluster, however, is minor in comparison.

Furthermore, in Table 5 we show the results for Pivot-
BiCluster and Split-Merge Clustering when all previous 
segments are retained in the clustering solutions. It is clear 
that as the algorithms progress through the data segments, 
more clusters from the previous segments get merged into 
one large cluster for both PivotBiCluster and Split-Merge 
Clustering.

6.1.2  Continuous S1 dataset

In this subsection, we present the results obtained from the 
continuous version of the S1 dataset, presented in Fig. 4 and 
Table 6. We observe that the performance of PivotBiCluster 
in this scenario dramatically decreases. In the first iteration, 
when D1 is clustered, there is an instant decrease in the num-
ber of clusters (see Fig. 4). The clustering solution should 

a

b

c

Fig. 5  The clustering solutions obtained on each data segment 
D1,D2,D3,D4 of the continuous S1 dataset, where the previous seg-
ment is included. The results generated by the three studied algo-

rithms are depicted as follows: a EvolveCluster, b Split-Merge Clus-
tering, and c PivotBiCluster. Each color of the data points in the 
figures represents a single cluster within that segment

Table 7  Results from the validation measures F 1 , JI, and SI on the 
continuous S1 dataset, where the previous data segment is kept dur-
ing evaluation, for all three clustering algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster F1 0.993 0.991 0.995 0.994
JI 0.987 0.983 0.989 0.988
SI 0.718 0.707 0.707 0.711

Split-Merge F1 0.511 0.518 0.514 0.52057
JI 0.346 0.354 0.351 0.358
SI −0.113 −0.141 −0.121 −0.153

PivotBiCluster F1 0.564 0.517 0.396 0.514
JI 0.410 0.370 0.267 0.368
SI −0.109 −0.065 0.177 0.025

Table 8  Results from the 
validation measures F 1 , JI, 
and SI on the continuous 
S1 dataset, where the all 
previous data segments are 
kept during evaluation, for the 
PivotBiCluster and Split-Merge 
Clustering algorithm

D0 D0–D1 D0–D2 D0–D3 D0–D4

Split-Merge F1 1 0.511 0.398 0.340 0.343
JI 1 0.346 0.251 0.207 0.210
SI 0.719 −0.113 −0.228 −0.206 −0.146

PivotBiCluster F1 1 0.564 0.346 0.250 0.303
JI 1 0.410 0.214 0.143 0.180
SI 0.719 −0.109 −0.067 0.227 −0.166
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contain 15 clusters, as is the case for both EvolveCluster 
and Split-Merge Clustering. PivotBiCluster instead opts to 
reduce the number of clusters to 2, showing a clear case of 
under-clustering. In contrast, both EvolveCluster and Split-
Merge Clustering show that they can cluster a continuous set 
of behaviors over time.

Similarly to the original S1 dataset, when the data seg-
ments are merged, it is apparent that Split-Merge Clus-
tering fully adapts the previous data segment’s clustering 
solutions to the new segments. Figure 5b shows that many 
of the data points are incorrectly clustered for Split-Merge 
Clustering. PivotBiCluster has a similar experience when 
the segments are merged, as on the separated segments, a 
clear result of under-clustering. EvolveCluster, on the other 
hand, manages to retain a higher performance with valida-
tion measure scores on par with the non-merged segments. 
These results are further emphasized by looking at Table 7. 

Only EvolveCluster manages to produce similar results as 
when the segments are not merged. Both PivotBiCluster and 
Split-Merge Clustering show a drastic decrease in all three 
measures, with SI even producing negative numbers. Finally, 
when we include all the previous data segments in both the 
clustering and evaluation, as shown in Table 8, the produced 
clustering solutions of PivotBiCluster and Split-Merge Clus-
tering are both continuing the declining trend.

Figures 10 and 11, available in the Appendix, show the 
results produced on both the original and the continuous S1 
datasets when all segments are combined.

6.2  Covertype dataset

The results produced by the three clustering algorithms 
on the Covertype dataset are shown in Table 9. As can 
be seen, PivotBiCluster outperforms both the Split-Merge 
Clustering and EvolveCluster algorithms in the case of the 
D0 − D1 setup in the table. These results are in line with 
the results presented in (Boeva et al. 2019). It is interesting 
to notice the difference between EvolveCluster and Split-
Merge Clustering on what scores their clustering solutions 
obtain in the D1 column compared to the D0 − D1 column. 
Evidently, EvolveCluster does not manage to cluster the 
D1 dataset as proficiently as the Split-Merge Clustering 
algorithm and the final score when the data segments are 
merged is helped by the clustering from D0 . Addition-
ally, as the results generated on the S1 datasets show (see 
Figs. 3 and 5), when the two data segments are combined, 
it is clear that the clustering solution on D0 given to the 

Table 9  Results from the validation measures F 1 , JI and SI on the 
Covertype dataset for all three algorithms, on both the individual ( D0 
and D1 ) and combined ( D0 − D1 ) data segments

D0 D1 D0–D1

EvolveCluster F1 1 0.422 0.539
JI 1 0.275 0.436
SI 0.063 −0.007 −0.040

Split-Merge F1 1 1 0.754
JI 1 1 0.656
SI 0.063 0.062 0.034

PivotBiCluster F1 1 0.905 0.903
JI 1 0.849 0.848
SI 0.063 0.192 0.194

Table 10  Number of clusters for each algorithm on the Covertype 
dataset, on both the individual ( D0 and D1 ) and combined ( D0 − D1 ) 
data segments

Algorithm D0 D1 D0 − D1

EvolveCluster 7 3 7
Split-Merge 7 7 7
PivotBiCluster 7 5 5
Ground truth 7 7 7

Table 11  Results from the 
validation measures Silhouette 
Index and Average Intra-Cluster 
Distance on the DELMH 
dataset, where the all previous 
data segments are discarded 
before evaluating, for all 
algorithms

D0 D1 D2 D3 D4

EvolveCluster SI 0.080 0.119 0.115 0.054 0.066
IC-av 1189 672 602 570 619

Split-Merge SI 0.080 0.105 0.150 0.077 0.116
IC-av 1189 673 592 588 647

PivotBiCluster SI 0.080 0.119 0.133 0.076 0.116
IC-av 1189 661 591 595 647

Table 12  Results from the validation measures Silhouette Index and 
Average Intra-Cluster Distance on the DELMH dataset, where the 
previous data segment is kept during evaluationg, for all algorithms

D0–D1 D1–D2 D2–D3 D3–D4

EvolveCluster SI 0.071 0.057 0.067 0.035
IC-av 1716 1268 1107 1147

Split-Merge SI 0.019 −0.012 0.019 0.065
IC-av 1727 1256 1079 1054

PivotBiCluster SI 0.002 −0.015 0.040 0.074
IC-av 1778 1245 1080 1163
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Split-Merge Clustering algorithm is crippled when Split-
Merge Clustering clusters the D1 segment.

Furthermore, in Table 10, we present the number of clus-
ters in each data segment produced by the three algorithms. 
We can see that EvolveCluster produces far too few clusters 
when clustering D1 , with only three out of the existing seven. 
Similarly, PivotBiCluster is under-clustering D1 with five out 
of the seven clusters, partly why higher validation measures 
are obtained for its solution. It is only Split-Merge Cluster-
ing that manages to retain all seven clusters. These results 
follow the previous results on the S1 datasets, where Split-
Merge Clustering consistently adapts the clustering solutions 
from previous segments to the new.

It is also interesting to see that all the produced clustering 
solutions on the Covertype dataset produce low SI scores. 
The two aspects that SI concerns are the compactness of the 
produced clusters and the separation between them. Cov-
ertype contains many features and has clusters that overlap 
each other in some of the features, causing SI to produce 
lower scores for the clustering solutions. This is evident 
when we compare the scores of F 1 , JI, and SI for all three 
algorithms, but especially for both Split-Merge Clustering 
and PivotBiCluster. PivotBiCluster manages to produce an 
F 1 score of 0.903 and a JI score of 0.848 while only having 
a SI score of 0.194 (Table 9).

6.3  DELMH dataset

The results for the DELMH dataset are presented in 
Tables 11 and 12. It is apparent in both tables that all three 
algorithms produce clustering solutions with much lower SI 
scores compared to the previous experiments. This is partly 
because of the difficulty in clustering this dataset. Most of 
the daily profiles in the dataset are similar to each other. 
During the majority of the day, there is no actual consump-
tion of electricity. When the residents are out of their homes, 
only minor consumptions, such as household appliances’ 
idle consumption, are drawn. Similarly, when the residents 
are asleep, only the idle consumptions are drawn.

In Table  12, we can see that for all segments up to 
D2 − D3 , the EvolveCluster algorithm performs better in 
terms of the SI, but IC-av suggests there is no such clear 
distinction. In the final data segment, it is interesting to see 
that both PivotBiCluster and Split-Merge Clustering produce 
higher SI scores than EvolveCluster, and for Split-Merge 
Clustering, there is also a significantly better IC-av score. 
However, similarly to the results of the Covertype experi-
ments, both SI and IC-av indicate that the produced cluster-
ing solutions are pretty poor. Based on the nature of the data, 
the electricity consumption of an individual household, it is 
natural that the produced clustering solutions are deemed 

Fig. 6  The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each 
color of the data points in the figures represents a single cluster within that segment

Table 13  Results from the validation measures F 1 , JI and SI on the 
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.854 1 0.842 0.764
Jaccard 1 0.796 1 0.760 0.662
Silhouette 0.745 0.712 0.697 0.600 0.695

Fig. 7  The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each 
color of the data points in the figures represents a single cluster within that segment

Table 14  Results from the validation measures F 1 , JI and SI on the 
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.903 0.822 0.650 0.662
Jaccard 1 0.857 0.733 0.514 0.566
Silhouette 0.745 0.685 0.576 0.510 0.572
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poorly. Many of the daily profiles contain similar values and 
shapes, making it hard to distinguish between them.

6.4  Concept drift analysis

In this subsection, we present the results of the second 
experiment, where we investigate how EvolveCluster man-
ages to handle concept drift. In Figs. 6,  7,  8, and  9, we have 
4 data streams that are initialized identically but have differ-
ent continuations. The corresponding validation measures 
are presented in Tables 13,  14,  15, and  16, respectively.

In the figures, we see constant incremental concept drift 
in each of the data streams. All clusters move slightly at 
every new data point, creating oval rather than spherical 
shaped clusters. We can see that EvolveCluster can model 
these incremental changes of each cluster, especially when 
the clusters have some distance between each other. How-
ever, when a cluster centroid reaches the boundary of the 
feature space, its direction is immediately changed to keep 
the cluster within the boundaries. For instance, in the bot-
tom right corner of Fig. 8 in segment D1 , we identify that 
the blue cluster has reached the boundary and changed its 
direction. EvolveCluster assigns the data points belonging 

to the cluster after the directional change to a new cluster as 
it is no longer spherical.

In each stream, we can also observe the creation or dele-
tion of clusters in each of the segments from D1 and onwards. 
When new clusters appear in the stream, EvolveCluster tends 
to manage the addition by applying a split. However, when 
the clusters overlap, such as the light blue cluster in segment 
D2 of Fig. 9, the new cluster is not immediately identified.

EvolveCluster relies on the transition between segments 
to manage the merging of clusters, so we can notice cases 
of over-clustering in some segments. For instance, in seg-
ments D3 and D4 of Fig. 7, a single cluster is divided into 
3-4 separate clusters on the right side of the figures. When 
many clusters are close to each other, and then some of 
them disappear, we can observe EvolveCluster struggling 
to merge them. When it does not manage to merge clusters, 
it cascades further to not splitting the neighboring clusters 
if necessary accurately. This is evident in the upper right 
corner of the same figure, where the pale orange and red 
clusters likely should be divided into three.

Fig. 8  The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each 
color of the data points in the figures represents a single cluster within that segment

Table 15  Results from the validation measures F 1 , JI and SI on the 
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.865 0.733 0.863 0.831
Jaccard 1 0.800 0.600 0.794 0.746
Silhouette 0.750 0.718 0.572 0.589 0.591

Fig. 9  The clustering solutions obtained on each data segment D0, D1, D2, D3, D4 on the data stream generated by our RBFGenerator. Each 
color of the data points in the figures represents a single cluster within that segment

Table 16  Results from the validation measures F 1 , JI and SI on the 
data stream generated by our RBFGenerator

D0 D1 D2 D3 D4

F1 1 0.861 0.802 0.755 1
Jaccard 1 0.799 0.703 0.643 1
Silhouette 0.749 0.640 0.664 0.657 0.802
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7  Discussion

7.1  EvolveCluster properties

One of the significant benefits of the proposed EvolveCluster 
algorithm is its simplicity in using prior knowledge about the 
previous data segments. With previous centroids, Evolve-
Cluster influences the clustering of the new segment to fol-
low the same structure as the previous. The two aspects we 
have investigated using the S1 dataset seem to be handled 
proficiently by EvolveCluster. When we cluster the original 
S1 dataset, as shown in Fig. 3, EvolveCluster discovers new 
clusters while maintaining the old clusters still present in 
the data. However, in Fig. 3a under D2 , we also identify the 
limitations of the proposed algorithm. When two clusters 
are close and should be merged, it may result in an over-
clustered solution. As there is no specific merge criterion 
for the algorithm, this is not a surprising result.

Furthermore, as shown by the results from the clustering 
of the continuous S1 dataset, we can see that it is easy for 
EvolveCluster to cluster similar behaviors that repeatedly 
occur in multiple segments. Contrary to both PivotBiCluster 
and Split-Merge Clustering, it is easy to map and identify 
trends that occur between segments. When PivotBiCluster 
and Split-Merge Clustering combine the old data segment 
with the new, it is clear that the relationships of the clusters 
between the segments are lost; thus, providing difficulties in 
analyzing the multiple segments and their trends.

7.2  Comparison to other evolving clustering 
algorithms

PivotBiCluster is continuously under-clustering the S1 
datasets in this study. This can specifically be seen in Fig. 4 
and its corresponding Table 6. We can observe here that in 
the first iteration of the clustering process, PivotBiCluster 
reduces the number of clusters from 15 to 2 and continues 
to under cluster for the remainder of that experiment. This 
is partly why PivotBiCluster achieves a higher score on both 
the F1 and Jaccard measures.

With the variation of discarding the previous data seg-
ment in its produced clustering solutions, the Split-Merge 
Clustering algorithm seems to perform better than Evolve-
Cluster in all the experiments in this study. Split-Merge 
Clustering never performs any modifications to the new 
clustering solution but instead combines the previous and 
the new solutions by morphing the old to align with the 
new. Since all the clustering solutions provided to Split-
Merge Clustering are either based on the ground truth labels 
(S1 and Covertype) or extensively clustered beforehand 
(DELMH), the results indicate that the Split-Merge Clus-
tering performs better than EvolveCluster. However, when 

we include the prior data segments and use the entirety of 
the produced clustering solutions, the results significantly 
decreased as shown, e.g., in Fig. 3 and Table 4.

7.3  Handling concept drift and outliers

By analyzing the results and how EvolveCluster operates, 
we aim to discuss the characteristics of EvolveCluster in 
the presence of outliers. If a prominent outlier exists within 
a segment, it will not be removed directly by EvolveCluster. 
There are no mechanisms in place in itself that identify or 
removes them. Instead, if the outlier drastically differs from 
the other clusters, the splitting procedure of the algorithm 
is likely to promote the outlier to a singleton cluster. If no 
similar data objects arrive in future segments after the cre-
ated singleton cluster, they will be discarded as a part of the 
clustering procedure. However, what is seen as an outlier in 
the current segment might not be determined to be one in 
future segments.

It is harder to determine if the data objects are outliers or 
if the streams’ concepts are evolving as the stream evolves. 
In our second experiment, where we generated data using 
an RBFGenerator, we investigated how EvolveCluster mod-
els data streams with different concept drifts. We included 
constant incremental changes to each cluster present in 
the data stream, and EvolveCluster managed to model the 
moving clusters accurately. This type of concept drift is 
not always easy to identify with incremental approaches, 
as data is either removed or weighed down as time moves 
along. With EvolveCluster, we can compare the produced 
clustering solutions of each segment to identify if a cluster 
has moved significantly compared to previous segments. If 
more significant changes are present, it might be sufficient 
to compare two neighboring clustering solutions, but it is 
possible to compare segments further apart with drifts that 
appear slowly over time.

Additionally, to fully capture the dynamics of evolving 
data streams, we included creation and deletion of clus-
ters in our experiments. These represent the sudden and 
gradual concept shift scenarios, in addition to when cluster 
centroids reach the boundaries and suddenly change direc-
tion. From the results, we noted that the splitting func-
tionality of EvolveCluster generally manages to model 
the stream when new clusters emerge. Depending on the 
current status of the clustering solutions when new clus-
ters emerge, EvolveCluster identifies the need for a split 
to model more accurately. However, as no specific merge 
criterion exists and EvolveCluster instead relies on the 
transitions to merge clusters, there are occasions where 
both over- and under-clustering occurs. When the cluster-
ing solution produced by EvolveCluster represents a single 
cluster by multiple smaller clusters, it appears to disrupt 
the efficacy of the splitting procedure on another cluster. 
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Specifically when the cluster to split and the ones to merge 
are very close to each other. These tendencies lead us to 
believe a merge criterion might be necessary to fully cap-
ture the dynamics of an evolving data stream, but it will 
add to the complexity of EvolveCluster.

8  Conclusions

This study has introduced a novel evolutionary clustering 
algorithm (EvolveCluster) capable of modeling data streams 
containing evolving data. Specifically, our experiments have 
shown that the proposed algorithm can retain previous trends 
and identify new behaviors as they emerge. Compared to simi-
lar approaches, EvolveCluster does not require each data seg-
ment to be clustered in advance, and it easily identifies the 
correlation of clusters between segments. Each segment in the 
data stream is clustered based on how the data was behaving in 
the previous segment, which produces an efficient clustering.

We have compared our evolutionary clustering algorithm 
against two similar approaches, namely the PivotBiCluster 

and Split-Merge Evolutionary Clustering algorithms. The 
results have shown that the proposed algorithm can clus-
ter a continuous behavior over multiple data segments and 
identify new clusters as they emerge. Furthermore, the 
experiments have also revealed shortcomings of the other 
two algorithms where they tend to alter the given clustering 
solutions for the worse.

Our future work includes developing and evaluating a 
distributed version of the proposed evolutionary cluster-
ing algorithm. We will also investigate the possibility of 
a dynamic split criterion to eliminate the need for tuning a 
parameter. Furthermore, incorporating an additional option 
to remember cluster centers from data segments earlier 
than the previous data segment could be an exciting area of 
research. Adding this option could make it easier for Evolve-
Cluster to identify recurring concepts.

Appendix

See Figs 10 and 11.

a

b

Fig. 10  The clustering solutions obtained on each data segment 
D0,D1,… ,D4 of the original S1 dataset, where the all previous seg-
ments are included. The results generated by the three studied algo-

rithms are depicted as follows: (a) EvolveCluster, (b) split-merge 
clustering, and (c) PivotBiCluster. Each color of the data points in the 
figures represents a single cluster within that segment

a

b

Fig. 11  The clustering solutions obtained on each data segment 
D0,D1,… ,D4 of the continuous S1 dataset, where the all previous 
segments are included. The results generated by the three studied 

algorithms are depicted as follows: (a) EvolveCluster, (b) split-merge 
clustering, and (c) PivotBiCluster. Each color of the data points in the 
figures represents a single cluster within that segment
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