
Software Quality Journal (2025) 33:22
https://doi.org/10.1007/s11219-025-09720-9

RESEARCH

Supporting the identification of prevalent quality issues
in code changes by analyzing reviewers’ feedback

Umar Iftikhar1 · Jürgen Börstler1 · Nauman Bin Ali1 ·Oliver Kopp2

Accepted: 5 April 2025
© The Author(s) 2025

Abstract
Context: Code reviewers provide valuable feedback during the code review. Identifying
common issues described in the reviewers’ feedback can provide input for devising context-
specific software development improvements. However, the use of reviewer feedback for
this purpose is currently less explored. Objective: In this study, we assess how automation
can derive more interpretable and informative themes in reviewers’ feedback and whether
these themes help to identify recurring quality-related issues in code changes. Method: We
conducted a participatory case study using the JabRef system to analyze reviewers’ feedback
on merged and abandoned code changes. We used two promising topic modeling methods
(GSDMM and BERTopic) to identify themes in 5,560 code review comments. The result-
ing themes were analyzed and named by a domain expert from JabRef. Results: The domain
expert considered the identified themes from the two topicmodels to represent quality-related
issues. Different quality issues are pointed out in code reviews for merged and abandoned
code changes. While BERTopic provides higher objective coherence, the domain expert con-
sidered themes from short-text topic modeling more informative and easy to interpret than
BERTopic-based topic modeling. Conclusions: The identified prevalent code quality issues
aim to address the maintainability-focused issues. The analysis of code review comments
can enhance the current practices for JabRef by improving the guidelines for new developers
and focusing discussions in the developer forums. The topic model choice impacts the inter-
pretability of the generated themes, and a higher coherence (based on objective measures) of
generated topics did not lead to improved interpretability by a domain expert.

Keywords Modern code review · Software quality improvement ·
Natural language processing · Open-source systems

B Umar Iftikhar
umar.iftikhar@bth.se

Jürgen Börstler
jurgen.borstler@bth.se

Nauman Bin Ali
nauman.ali@bth.se

Oliver Kopp
oliver.kopp@iste.uni-stuttgart.de

1 Blekinge Institute of Technology, Valhallavägen 1, SE-37179 Karlskrona, Blekinge, Sweden

2 University of Stuttgart, Universitätsstr. 38, 70593 Stuttgart, Baden-Württemberg, Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11219-025-09720-9&domain=pdf

 22 Page 2 of 34 Software Quality Journal (2025) 33:22

1 Introduction

In modern code review, experienced developers and architects review code changes and give
feedback as code review comments (CRCs) to improve source code quality (McIntosh et
al., 2014; Bavota and Russo, 2015; McConnell, 2004; Unterkalmsteiner et al., 2024). The
expert’s feedback on the submitted code change is cognizant of important factors such as the
system architecture (Paixao et al., 2019), domain (Bacchelli and Bird, 2013), technology, the
team, and the organization (Bosu et al., 2017). Such feedback is often beyond what static
code analyzers can provide today. Moreover, static code analyzers have been criticized for
reporting relatively high numbers of false positives (Johnson et al., 2013; Vassallo et al.,
2020) or trivial issues. The feedback provided in CRCs is typically only utilized once when
developers implement a specific corrective action. As reviewers may point out similar issues
to the same or different developers, identifying such prevalent issues can be helpful, e.g.,
to propose preventive measures and find systematic improvements (Ochodek et al., 2022;
Iftikhar et al., 2023). Such preventive measures may include more precise guidelines for
project contributors, focused training on a particular technology, or reconfiguring the static
analysis tool (Gunawardena et al., 2023), thus helping avoid similar issues in the future.
The literature shows that analyzing the communication between developers can lead to the
improvement of software documentation (Henß et al., 2012; Souza et al., 2019), identification
of software maintenance tasks (Sun et al., 2015), and bug localization (Ahasanuzzaman et
al., 2020).

It is infeasible to aggregate quality issues discussed in individual CRCs without qualita-
tively analyzing individual comments. The large number of review comments (Bosu et al.,
2017) makes their manual analysis impractical beyond research studies. Practitioners, there-
fore, often have to rely on their subjective judgment of what they perceive as prevalent code
quality issues, and thus what, in their opinion, are the required improvements. Therefore,
automated classification approaches are needed to more objectively assess prevalent code
quality issues discussed in large code review repositories. Automated code review comment
classification approaches based on machine-learning methods have recently been shown to
provide promising results (Arafat and Shamma, 2020; Ochodek et al., 2022;Wen et al., 2022;
Iftikhar et al., 2023).

In this study, we investigate how to support practitioners in identifying and profiling
prevalent quality issues, as pointed out in code review comments. We used the participatory
case study design with an iterative evaluation approach suggested by Kindon et al. (2007)
and Baca and Petersen (2013). We performed two iterations using the code review comment
analysis approach by Iftikhar et al. (2023). In the first iteration, we used Iftikhar et al.’s
(Iftikhar et al., 2023) approach as is, while in the second iteration, we evaluated an alternate
topic modeling method based on BERTopic (Grootendorst, 2020). The second iteration was
required to further explore improvements in the results of the first iteration. In both iterations,
with the help of a domain expert, we evaluated the degree of ease of naming the topics
produced (Silva et al., 2024). The approach used for each iteration is summarized in Fig. 1.

To demonstrate the utility of the approach proposed in (Iftikhar et al., 2023), we explore
whether it helps identify code quality issues discussed in code review comments for merged
or abandoned code changes. The main contribution of this study is:

1. Evaluation by domain expert of two promising approaches to derive interpretable and
meaningful themes from code review comments

2. Exploring the effectiveness of large language models to provide appropriate labels to
generated topics.

123

Software Quality Journal (2025) 33:22 Page 3 of 34 22

Fig. 1 Overview of the approach utilizing objective and subjective measures to assess the quality of the
generated topics in each iteration

We organized the remainder of the paper as follows. We discuss related work in Section 2,
and the methodology is covered in Section 3. Section 4 presents our results, followed by a
discussion of the results in Section 5 and threats to validity in Section 6. Conclusions can be
found in Section 7.

2 Related work

This section summarizes related work on three themes: (1) manual categorization of CRCs,
(2) automated analysis of CRCs, and (3) investigations of factors that impact the outcome of
submitted code changes.

2.1 Manual categorization of CRCs

Among the existing studies that manually categorized issues in code reviews, Mäntylä and
Lassenius (2009) manually analyzed nine industrial and 23 academic systems to categorize
defects identified during code reviewdiscussions. They further classified the identified defects
and observed that 75% of the defects relate to evolvability while 25% of the defects relate to
functionality. Beller et al. (2014) adopted a similar approach to analyze 1400 code changes
from two open-source systems to investigate issues fixed during code review. Their results
corroborated (Mäntylä and Lassenius, 2009), where approximately 75% of the fixed issues
were related to maintainability and 20% of the fixed issues were related to functionality.
Gunawardena et al. (2023) manually analyzed 417 CRCs to propose a fine-grained taxonomy
of 117 defects discussed in the CRCs. They further mapped the proposed defects taxonomy
to static analysis tools, where 38% identified defects could be resolved using static analysis
tools, thus demonstrating that categorization of issues in CRCs may have implications for
practice.

While these studies demonstrate that categorizing CRCs can lead to identifying quality-
related issues, which can assist in software improvement tasks, the manual, effort-intensive
approach limits their application to new datasets.

2.2 Automation to support CRCs analysis

Given the large code review repositories in practice, existing studies have approached auto-
mated categorizing of CRCs with different methodologies. Arafat and Shamma (2020)

123

 22 Page 4 of 34 Software Quality Journal (2025) 33:22

categorized and predicted topics in CRCs from six closed-source systems using supervised
machine learning algorithms using a manually labeled dataset. They achieved 63% accuracy
with the Support Vector Machine (SVM) method. Ochodek et al. (2022) classified 2,672
CRCs from three open-source systems using the Bidirectional Encoder Representation from
Transformers (BERT) (Devlin et al., 2018) language model. They achieved an average accu-
racy of over 80% compared to manually classified CRCs. Other studies (Li et al., 2017;
Fregnan et al., 2022; Turzo et al., 2023) have also considered using supervised machine
learning to train models using multiple features, e.g., code snippets and source code metrics,
in addition to code review comments to categorize code review comments and code changes
automatically. The studies have promising results but require labeled datasets, thus limiting
the applicability of their approach due to the lack of labeled data in real-world settings.

To investigate how community and personal feedback trends evolve as the community
matures, Wen et al. (2022) utilized Latent Dirichlet Allocation (LDA) on CRCs from one
open-source system, Nova, and one closed-sourced system. Their results show that as review-
ers accumulate experience, the feedback provided to code changes is more context-specific
and technical.

Iftikhar et al. (2023) extended thework ofWen et al. (2022) and evaluated several potential
improvements in the design by Wen et al. (2022). Among the proposed improvements, they
found that short-text topic modeling (Yin and Wang, 2014) leads to more stable topics than
traditional topic modeling. Similarly, among the alternative methods for selecting the number
of topics, their two-stage topic selection approach slightly improved topic stability over the
single-stage topic selection used by Wen et al. (2022). However, both studies (Iftikhar et al.,
2023;Wen et al., 2022) do not demonstrate how to derive and profile code quality issues using
common themes identified from CRCs. We summarize the main findings from these studies
in Table 1. In this study, we address this gap by involving a domain expert from JabRef.

Silva et al. (Silva et al., 2024) used four short text topic models and human-centric metrics
to evaluate how comprehensible the topics generated from developer communication on
an open-source instant messaging platform. In their study, while no single short text topic
model performed best on all datasets considered, the Gibbs Sampling Dirichlet Multinomial
Mixture Model (GSDMM) (Yin and Wang, 2014) led to more comprehensible topics for
the participants involved. Their study also observed that objective coherence metrics and
human-centric metrics, e.g., subjective evaluation of comprehension of the generated topics
by developers, did not align. However, their study did not consider BERTopic and only
considered four short-text topic models.

BERTopic (Grootendorst, 2020) is a modified BERT-based topic model that uses pre-
trained word embeddings and a clustering approach to leverage semantic relationships
between words in a document. Recently, Udupa et al. Udupa et al. (2022) demonstrated
that BERTopic (Grootendorst, 2020), compared to GSDMM (Yin andWang, 2014), provides
more coherent topics for short-text data. However, the performance of BERTopic is yet to be
evaluated in the analysis of code review comments.

2.3 Investigations of factors behind abandoned andmerged code changes

Existing studies have investigated the reasons for the rejection of code submissions. Got-
tigundala et al. (2021) reported that the reasons for the rejection of pull requests include
implementing unnecessary functionality, conflicting pull requests, reattempted pull requests,
and inactivity in open pull requests. Kononenko et al. (2018) reported that pull requests that
are large and do not address a single purpose are likely not to bemerged. They further observed

123

Software Quality Journal (2025) 33:22 Page 5 of 34 22

Ta
bl
e
1

O
ve
rv
ie
w
of

ex
is
tin

g
st
ud
ie
s

St
ud
y

A
pp
ro
ac
h

D
efi
ne
d
ca
te
go
ri
es

R
es
ul
t

A
ra
fa
ta
nd

Sh
am

m
a
(2
02

0)
L
og
is
tic

R
eg
re
ss
io
n,

k-
N
ea
re
st

N
ei
gh
bo
rs

(K
N
N
),

B
er
no
ul
li

N
ai
ve

B
ay
es
,

M
ul
tin

om
ia
l

N
ai
ve

B
ay
es

(M
N
B
),

Su
pp

or
t

V
ec
to
r

M
ac
hi
ne
,

St
oc
ha
st
ic
G
ra
di
en
tD

es
ce
nt

(S
G
D
)

D
oc
um

en
ta
tio

n,
V
is
ua
l

R
ep
re
-

se
nt
at
io
n,

O
rg
an
iz
at
io
n,

So
lu
tio

n
A
pp

ro
ac
h,

R
es
ou

rc
e,

V
al
id
at
io
n,

L
og

ic
al
,S

yn
ch
ro
ni
za
tio

n,
Su

pp
or
tin

g
L
ib
ra
ry
,
D
ef
ec
t,

A
PI

C
al
ls
,
Fa
ls
e

Po
si
tiv

e,
O
th
er
s

A
cc
ur
ac
y
63

.8
9%

O
ch
od
ek

et
al
.(
20

22
)

B
E
R
T

C
od

e_
de
si
gn

,
C
od

e_
st
yl
e,

C
od

e_
na
m
in
g,

C
od

e_
lo
gi
c,

C
od

e_
io
,

C
od

e_
da
ta
,

C
od

e_
A
PI
,

C
od

e_
do

c,
C
om

pa
tib

ili
ty
,
R
ul
e_
de
f.

C
on

fig
_c
om

m
it_

pa
tc
h_

re
vi
ew

,
C
on

-
fig

_b
ui
ld
in
g_

in
st
al
lli
ng

M
at
he
ew

s
C
or
re
la
tio

n
C
oe
ffi
ci
en
t

80
%

L
ie
ta
l.
(2
01

7)
SV

M
ba
se
d
Tw

o-
St
ag
e
H
yb
ri
d
C
la
s-

si
fic
at
io
n

C
or
re
ct
ne
ss
,
D
ec
is
io
n,

M
an
ag
em

en
t,

In
te
ra
ct
io
n

F-
M
ea
su
re

82
%

Fr
eg
na
n
et
al
.(
20

22
)

R
an
do
m

Fo
re
se
t,
J4
8,

N
ai
ve

B
ay
es

D
oc
um

en
ta
tio

n,
V
is
ua
l

R
ep
re
-

se
nt
at
io
n,

O
rg
an
iz
at
io
n,

So
lu
tio

n
A
pp

ro
ac
h,

R
es
ou

rc
e,

V
al
id
at
io
n,

L
og

ic
al
,S

yn
ch
ro
ni
za
tio

n,
Su

pp
or
tin

g
L
ib
ra
ry
,
D
ef
ec
t,

A
PI

C
al
ls
,
Fa
ls
e

Po
si
tiv

e,
O
th
er
s

A
U
C
-R
O
C
0.
91

T
ur
zo

et
al
.(
20

23
)

B
E
R
T,

C
od

eB
E
R
T

Fu
nc
tin

oa
l,
R
ef
ac
to
ri
ng

,D
oc
um

en
ta
-

tio
n,

D
is
cu
ss
io
n,

Fa
ls
e
Po

si
tiv

es
M
C
C
0.
57

W
en

et
al
.(
20

22
)

L
D
A

C
on

te
xt
Sp

ec
ifi
c,
E
xc
ep
tio

n
ha
nd

lin
g,

L
an
gu

ag
e

Sp
ec
ifi
c,

D
es
ig
n,

C
od

e
re
vi
ew

pr
oc
es
s,

C
od

e
st
yl
in
g,

U
ni
t

te
st
in
g

-

If
tik

ha
r
et
al
.(
20

23
)

G
SD

M
M

In
he
ri
ta
nc
e,
C
on
cu
rr
en
cy
,G

ui
de
lin

es
,

C
om

po
ne
nt

le
ve
ll
og

ic
-

123

 22 Page 6 of 34 Software Quality Journal (2025) 33:22

that the experience of a pull request author is significantly linked with the merge decision
for a pull request. Papadakis et al. (2020) found that source code management issues, lack of
understanding of project functionality, and poor understanding of reviewer expectations and
project guidelines were among the reasons for the rejection of pull requests.

Wang et al. (2019) identified 12 reasons for the abandonment of code changes. Duplicate
code changes, i.e., similar to other code changes, and code changes with a lack of reviewer
feedback, were among the frequent reasons for abandoned code changes. Researchers have
explored various factors influencing the likelihood of a code change being merged or aban-
doned. However, to the best of our knowledge, no prior work has analyzed CRCs to identify
themes in abandoned and merged code changes that might help developers identify recurring
quality-related issues.

As discussed in Section 1, code review comments are potentially a very relevant source
of information to mine insights regarding code quality issues. Thus, in this study, we explore
how CRCs can be analyzed to identify and develop a better profile of quality issues identified
in merged or abandoned code changes.

3 Methodology

In this case study, we pose and answer the following research questions:

1. RQ1:Which topic modeling method derives more interpretable and meaningful themes
from CRCs to identify recurring code quality issues?

2. RQ2: To what degree can Large-LanguageModels support topic naming of themes from
CRCs?

The first research question aims to subjectively evaluate the automation method in the
two iterations in terms of the ease of interpreting the generated topics by the domain expert.
Furthermore, we also subjectively assess the assigned themes in terms of their meaningful-
ness and degree of information from the perspective of the domain expert. We relied on a
domain expert’s perceptions regarding the interpretability and meaningfulness of the derived
themes. Their extensive system knowledge is required to evaluate whether the themes are
meaningful and indicate quality issues. The second research question explores the effec-
tiveness of Large Language Models in supporting the naming of the generated topics from
the two iterations. Evaluating LLMs’ effectiveness aids in evaluating whether we can fully
automate the approach and reduce the dependence on a human expert, which is usually a
resource-intensive activity.

The participatory case studymethod ismotivated by the need to incorporate the feedback of
domain experts in the iterative development and improvement of research-based interventions
(Baca and Petersen, 2013). In this study, the steps of each iteration include implementing
the topic model approach and collecting feedback from the domain expert to capture its
performance (Fig. 1 shows the steps in which the domain expert participated). In the first
iteration, we used (Iftikhar et al., 2023)’s approach to automatically identify topics in code
review comments. The approach suggests the use of GSDMM for topic modeling. A domain
expert analyzed and evaluated the themes derived through this approach. To address the
feedback of the domain expert and to improve the coherence, as measured using objective
coherence measures, of the topics in the second iteration, we explored the use of BERTopic
instead of GSDMM for topic modeling (Grootendorst, 2020). The resulting themes in the
second iteration were also analyzed by the same domain expert.

123

Software Quality Journal (2025) 33:22 Page 7 of 34 22

Table 2 Overview of data from JabRef (PR=pull request)

PR status Total number of
PRs

Number of PRs
with CRCs

Total CRCs Average CRC
length in words

Abandoned 717 38 535 26.5

Merged 4,862 388 5,025 22.8

Total 5,579 426 5,560 23.2

In this study, we analyzed code review comments for both abandoned and merged code
changes to demonstrate the effectiveness of our approach in profiling code quality issues.
Based on the different reasons for abandoning or merging code changes described in the
existing literature (Kononenko et al., 2018; Papadakis et al., 2020), we expect differences in
the reviewer feedback for the two classes of code changes. The topics identified using our
approach and named by the expert are expected to help profile the code quality issues the
reviewers are pointing out for merged and abandoned code changes.

3.1 Case project and domain expert

We choose to use JabRef1 as the case project. JabRef is an open-source, cross-platform,
citations and reference management tool developed in Java (Kopp et al., 2023). It aims to
help students, academics, and researchers to collect and maintain bibliographic information.
It covers more than 15 reference formats and supports 23 languages. At the time of the study,
JabRef version 5.12 was released. It is maintained by a core team of researchers and students
with 581 active contributors2. At least two reviewers, belonging to the core team members
and module experts, can review each submitted code change3. A proposed code change
may undergo several iterations of code review before merging until the code reviewers are
satisfied with the code quality. Code changes to specific modules, e.g., JavaFX and BibTeX,
are reviewed by module experts, while anyone in the core team can review the generic code
changes. The quality of the JabRef source code has previously been analyzed in the literature
(Nuñez-Varela et al., 2017; Olsson et al., 2017).

Another reason for selecting JabRef was the availability of a long-term maintainer and
a domain expert to assign representative names to identified topics. The domain expert was
not part of the research team that conceived, designed, or analyzed the results. The research
team collected, analyzed, performed member checking, and completed the first draft of the
paper before inviting the domain expert to be a co-author. In the writing phase, the domain
expert contributed mainly with a deeper contextual understanding of JabRef, checking the
results and reflections in the paper and thoroughly reviewing several versions of the paper.

3.2 Datasets

Table 2 shows an overview of the dataset. We used the REST API provided for GitHub4 to
extract CRCs and code change outcome status. Since we are only interested in code changes

1 https://www.jabref.org/
2 https://github.com/jabref/jabref/
3 https://devdocs.jabref.org/teaching.html
4 https://docs.github.com/en/rest/overview

123

https://www.jabref.org/
https://github.com/jabref/jabref/
https://devdocs.jabref.org/teaching.html
https://docs.github.com/en/rest/overview

 22 Page 8 of 34 Software Quality Journal (2025) 33:22

that are either abandoned or merged, we did not consider CRCs from code changes that are
still open or under discussion. We extracted CRCs from May 2014 till September 2023 as
CRCs from earlier were unavailable. We used the pull request number to relate CRCs and
code change status.

We replicated the pre-processing steps in previous studies (Iftikhar et al., 2023). We
converted all CRCs to lowercase and removed all brackets, punctuations, URLs, and words
containing numbers. We removed stop words using the standard pre-processing library in the
Gensimnatural language processing toolkit5.We further removed null strings and lemmatized
all CRCs to create a document entry for each code review comment, forming two lists
of documents, one from abandoned changes and one from merged changes. We preferred
lemmatization instead of stemming as lemmatization provides higher objective coherence
(Silva et al., 2021).

After data extraction and pre-processing of the CRCs, we got 5,560 CRCs from 426
code changes belonging to three major releases of JabRef. We did not consider code changes
withoutCRCs for the analysis and issue comments.Wedid not consider 60CRCs fromversion
2 as the release only contained CRCs from merged changes. We also removed 124 CRCs
with zero length after pre-processing. The extracted CRCs are provided in the replication
package online6.

3.3 First iteration: with GSDMM

3.3.1 Short text topic models

Short text topic models (STTM) have been demonstrated by Qiang et al. (2020) to have
superior performance than Latent Dirichlet Allocation (LDA) for short texts in terms of clas-
sification accuracy and purity (Yin and Wang, 2014). Short text topic models can handle the
sparse word co-occurrence pattern typical of short documents (Qiang et al., 2020; Silva et al.,
2024). CRCs are short pieces of text (Li et al., 2017). We selected the Gibbs Sampling-based
Dirichlet Multinomial Mixture model (GSDMM) (Yin and Wang, 2014) implementation by
Qiang et al. (2020). GSDMM has also improved average topic stability compared to LDA
(Iftikhar et al., 2023). Sincewe are interested in analyzing CRCs from abandoned andmerged
changes, we generate separate topic models for CRCs from abandoned and merged changes.

3.3.2 Parameter selection

The performance of topic classification depends on the choice of hyperparameters, topic-
to-document probability (alpha), word-to-topic probability (beta), and number of topics (N)
(Iftikhar et al., 2023). Biggers et al. (2014) suggest that lower values for the hyperparameters
lead to a more decisive model with less overlap among generated topics.

Topic stability, an adaptedmeasure of cross-run similarity of topics (Agrawal et al., 2018),
is defined as the median number of word-terms occurrences in all considered runs for a given
topic number while varying the hyperparameters alpha and beta between 0 and 1 for each
considered run. While (Panichella, 2021) observes that no fitness measure consistently leads
to superior quality topics in their dataset, we chose topic stability as it has been used in
existing studies (Wen et al., 2022; Iftikhar et al., 2023).

5 https://www.nltk.org/
6 https://doi.org/10.5281/zenodo.10408930

123

https://www.nltk.org/
https://doi.org/10.5281/zenodo.10408930

Software Quality Journal (2025) 33:22 Page 9 of 34 22

In the first stage, we considered N=[5..55] (in steps of five) for the number of topics to
analyze topic stability. We trained five GSDMMmodels for each dataset, sorted in a different
order for each run, with the choice of hyperparameters varied for each run. We used the
ten top words from five runs of GSDMM models to identify the most stable choice of N
in this first stage. In the second stage, we iterate in steps of one in the neighborhood of N
from the first stage to select the most stable topic. Next, to choose the most suitable values
for hyperparameters, we also calculate the objective coherence for the five combinations of
alpha and beta used in the topic stability stages and select the combination that provides the
highest objective coherence.

3.4 Second iteration: with BERtopic

BERTopic7 has been observed to achieve higher coherence, measured using objective coher-
ence measures, than GSDMM on short text classification tasks (Udupa et al., 2022) by
incorporating transformer-based clustering and categorical Term Frequency-Inverse Doc-
ument Frequency (c-TF-IDF) to generate dense clusters leading to interpretable topics
(Grootendorst, 2020).BERTopic’s design is versatile andprovides severalmethods for dimen-
sionality reduction, clustering, and topic representation. For each of these methods, multiple
parameters can be optimized to further improve the objective coherence of the generated
topics. However, finding optimal parameters can be challenging. In this regard, we adopted
the suggestions provided in the existing literature (Martin Borčin, 2024; Udupa et al., 2022;
Schneider et al., 2023).

Borčin et al. (Martin Borčin, 2024) evaluated several pre-trained embedding models, and
“all-mpnet-base-v2” provided the highest objective coherence in the considered datasets.

BERTopic supports several dimensionality reduction techniques, including Uniform
Manifold Approximation and Projection for Dimension Reduction (UMAP), Principal Com-
ponentAnalysis (PCA), and truncatedSingularValueDecomposition (SVD).WeusedUMAP
as suggested byMcInnes et al. (2018) for its ability to retain more local and global properties
in lower dimensions. We used the default values for the UMAP parameters.

Multiple clustering approaches are supported by BERTopic. We selected Hierarchical
Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) (Udupa et al.,
2022; Schneider et al., 2023).We usedTopicTunerAPI 8 to select the optimal parameter range
for the HDBSCAN (Schneider et al., 2023), specifically, min cluster size and min sample
size, which control the cluster size and the number of outliers. Martin Borčin (2024) observed
highest objective coherencewhile retaining approximately 80%of the input documents. Thus,
we did not consider min sample size that led to more than 20% CRCs as outliers. Similarly,
we did not considermin cluster size that led tomore than 55 topics to ensure a fair comparison
with the approach in the first iteration.

To generate topic representations, we used CounterVectorizer as suggested by Udupa et
al. (2022). We used the default values for max features, which are the maximum features
considered for topic representation. To select an appropriate range of N-grams to consider for
CounterVectorizer,we calculated the frequency of the different lengths of theN-gramspresent
in each dataset using the Ngrams package available in the NLTK library. We considered all
unigrams (Ngram=1) up to the largest N-gram that appeared more than five times in the
dataset. To improve the accuracy of the topic representations, we used the BM-25 weighing
suggested byMartin Borčin (2024) to reduce the number of stopwords used to formulate topic

7 https://github.com/MaartenGr/BERTopic
8 https://github.com/drob-xx/TopicTuner

123

https://github.com/MaartenGr/BERTopic
https://github.com/drob-xx/TopicTuner

 22 Page 10 of 34 Software Quality Journal (2025) 33:22

representations. To further fine-tune topic representation, we used the KeyBERTInspired
sub-module, as described in (Iftikhar, 2024). However, not all options were evaluated by
the domain expert. Only the most promising combination of parameters that provided high
objective coherence was selected for evaluation by the domain expert.

3.5 Objective coherencemeasures

Röder et al. (2015) systematically evaluated several objective coherence measures, including
Cnpmi (Bouma, 2009), Cv (Röder et al., 2015), and Umass (Aletras and Stevenson, 2013) for
their correlations with human judgment on six generic datasets. We chose Cv in our study as
it scored the highest average correlation with human judgment in their study (Röder et al.,
2015). TheCv objective coherencemeasure utilizes indirect cosinemeasure with Normalized
Pointwise Mutual Information (NPMI) over a boolean sliding window (Röder et al., 2015).

CV = 1

|P|
∑

(wi ,w j)∈P

�v(wi) · �v(w j)

‖�v(wi)‖‖�v(w j)‖

where P is the set of word pairs considered in the topic, �v(wi) is the vector representation of
the word wi .

3.6 Data collection

We designed a structured questionnaire9 that was shared with the domain expert for data
interpretation tasks. The structured questionnaire consisted of the top 20 unprocessed CRCs
belonging to each topic, the top 20 terms representing the topic (Wen et al., 2022), and
meta information such as the PR number, PR URL, and PR title, among other important
information that may help to assign a suitable theme to CRCs.

In addition to the structured questionnaire, we provided a separate document containing
the study aims and instructions for steps to be performed during the interpretation task.
We used the same document to collect the overall reflections on the ease of naming topics,
reflections on the naming process, difficulties faced when interpreting topic evolution, and
potential implications of the identified themes for process improvements within the project.
The same structured questionnaire was used to collect data at the end of both iterations.

3.7 Topic naming & subjective assessment

Current naming approaches can be categorized as manual, automated, and a combination
of manual and automated steps (Silva et al., 2021). Manual topic-naming has been used in
existing studies (Wen et al., 2022; Haque et al., 2020; Han et al., 2020). As depicted in Fig.
1, after tuning the topic model parameters to achieve high objective coherence, we (a) asked
the domain expert to suggest a representative name for each topic in each iteration, (b) to
provide their subjective assessment and perception regarding the ease of naming the topics
or the degree of interpretability, and (c) to provide their perception regarding the utility of
the themes and their meaningfulness in the context of JabRef. For topic naming, the domain
expert used 20 unprocessed CRCs and top 20 terms representing a topic.

9 online_link

123

Software Quality Journal (2025) 33:22 Page 11 of 34 22

Silva et al. (2021) observed that more coherent and cohesive topics are easier to label.
While (Silva et al., 2024) utilized the number of topics named and the consistency of the
named themes by different practitioners, we adopted the ease of naming the identified theme
as the criteria to judge the quality of the topics produced.

3.8 Automated topic naming using LLMs

To explore whether we can automate the topic naming process, we prompted the publically
available LargeLanguageModel, ChatGPT (OpenAI, 2023), to suggest a representative name
by utilizing each topic’s top 20 CRCs along with 20 top terms and compared the results to the
names that the domain expert manually assigned. We then compared the names assigned by
ChatGPT to the names by the domain expert. The prompt used is provided in the appendix
and as part of the replication package. We used GPT3.0 (OpenAI, 2023) based on the “text-
davinci-003” model due to models performance and cost-effectiveness. Since we were only
interested in exploring the potential of LLMs for topic labeling tasks, we only considered a
single model in this regard and chose not to compare other available LLM models.

3.9 Understanding abandoned andmerged changes

The generated topics are derived from the analysis of individual CRCs. On average, aban-
doned code changes in JabRef have 14 CRCs per code change, while merged code changes
have 13 CRCs per code change on average. The highest values of CRCs per code change
for abandoned and merged changes are 28 and 29, respectively. Since identified themes can
belong to different code changes, we aggregated identified themes at the code change using
the pull request number to better understand how code changes differ regarding the themes
of their related CRCs.

4 Results and analysis

In this section, we describe the characteristics of the data before presenting the derived themes
in the two iterations. We then present the results for the two research questions.

4.1 Data characteristics

The distribution of unprocessed CRC lengths from abandoned and merged changes shows
that both are predominantly short texts and follow a similar trend (see Fig. 2). Of the CRCs
in abandoned and merged changes, 75% are at most 28 and 29 words long, respectively, and
only 5% and 3%, respectively, are 80 words or longer in abandoned and merged changes.
This confirms our choice of topic model in Section 3.3.1.

Figure 3 shows the number of code commits contributed by different groups of reviewers.
Approximately 71% (3,937 out of 5,560) of the CRCs are from three reviewers who have
each contributed more than 500 PRs. Eight reviewers contributed between 100 and 500
PRs each and provided 18% (1,013 out of 5,560) of the CRCs. The remaining 33 out of 44
reviewers have only contributed approximately 9% (523 out of 5,560) of theCRCs. The above

123

 22 Page 12 of 34 Software Quality Journal (2025) 33:22

Fig. 2 Distribution of lengths (in the number of words) of CRCs for abandoned and merged changes

patterns show that reviewing is important in JabRef development, as the main contributors
also extensively review the code.

Figure 4 shows the distribution of the percentage of total PRs contributed by different
developers. The figure further depicts the percentage of each developer’s abandoned and
merged PRs. Almost 67% (3,780 out of 5,579) of the total PRs are contributed by only
1.7% (11 out of 630) of the developers. Therefore, in Fig. 4, we show the contributions
of 11 developers individually and group the rest as ‘Others’. The ‘Others’ in the figure,
who individually have contributed to less than one percent of total PRs, have collectively
contributed approximately 33% (1,799 out of 5,579) of the total PRs. The top 11 active
developers, on average, had approximately 7% PRs abandoned, while other developers, on
average, had 30% PRs abandoned.

Fig. 3 Distribution of the number of PRs and percentage of CRCs by code reviewers

123

Software Quality Journal (2025) 33:22 Page 13 of 34 22

Fig. 4 Distribution of the number of PRs by the developers who contributed 1% or more of the total PRs (Dev
1–Dev 11) and all others (Other)

4.2 Themes identified using topic models

In the following subsections, we first present the themes labeled by the domain expert in each
of the two iterations. We provide examples of themes from CRCs for both abandoned and
merged code changes.

4.2.1 First Iteration (with GSDMM) themes

We generated five topics each for CRCs from abandoned (Ta1–Ta5) and merged (Tm1–Tm5)
changes in the first iteration. The domain expert gave the theme names for these topics. Table 3
summarizes the theme names, from the first iteration, assigned to the generated topics and
the corresponding topic share (Barua et al., 2014) for each theme. The topic share is the
ratio of the number of CRCs for a topic (or theme) compared to the total number of CRCs
and indicates the relative size of a topic. As can be seen from Table 3, the topic shares for

Table 3 Manually assigned
themes (first iteration) for the
CRCs from abandoned
(Ta1–Ta5) and merged
(Tm1–Tm5) PRs together with
their topic share

Topic Manually assigned theme Topic share

Ta1 Java code quality 0.38

Ta2 Preferences localization 0.15

Ta3 External resources & path handling 0.24

Ta4 Code architecture 0.10

Ta5 Code formatting 0.14

Tm1 Shorter code 0.21

Tm2 Modern test style 0.31

Tm3 Simplify control flow 0.14

Tm4 JavaFX architecture 0.18

Tm5 UX 0.17

123

 22 Page 14 of 34 Software Quality Journal (2025) 33:22

topics from abandoned PRs are varied, thus suggesting that certain topics are more frequently
discussed by the JabRef reviewers.

Ta1: Java code quality
With a topic share of 0.38, Java code quality is the most prevalent theme for CRCs of

abandoned PRs. The CRCs in this theme are related to conforming with common principles
and patterns to foster maintainability. An example of a CRC illustrating this theme is shown
below (pull request 3418).

PR 3418: “I would propose to make this class non-static / not a singleton. You then have
a (public) constructor that accepts the current version string and a default constructor
that uses ‘java_version’. In this way, you can also easily write a test to verify the
methods in this class.” (Italics added for readability)

Ta2: Preferences localization
The CRCs in theme Preferences localization address issues related to JabRef’s cus-

tomization code, which deals with preferences related to the user interface, language, and
localizations. Such preferences and localizations also need to be reflected in the coding style.
An example of a CRC illustrating this theme is shown below.

PR 7181: “I wouldn’t set a maximum width for year and type columns. If users prefer
to give more space to these columns, why not? Simply setting ‘prefWidth‘ should be
fine.” (Italics added for readability)

Ta3: External resources & path handling
With a topic share of 0.24, External resources & path handling is the second largest theme

for CRCs of abandoned PRs. The CRCs in this theme deal with the adequate handling of
external resources such as file paths, resources identified byURLs, user and global directories,
and exception handling. An example of a CRC illustrating this theme is shown below.

PR 7728: “I don’t think this comment should be here. If you give this method a relative
path it is implementation-dependent I don’t think it is always going to be JabRef’s home
directory. I guess that in practice we should avoid giving it an absolute path.”

Ta4: Code architecture
Code architecture is the smallest theme for CRCs of abandoned PRs (topic share=0.1). Its

CRCs deal with issues related to placing functionality in appropriate classes and methods.
An example of a CRC illustrating this theme is shown below.

PR 557: “When a utility method is only used once, it should not be in a utility class. In
that case, it would only be used for this call. What is more, I do not like utility classes
for domain-specific things like external file types. It is OK for IO methods like reading
from a file, interfacing with the file system or for type conversion such as String to int.”

123

Software Quality Journal (2025) 33:22 Page 15 of 34 22

Ta5: Code formatting
Code formatting is another relatively small theme (topic share=0.14). The CRCs in this

theme are related to code styling, check-style issues, and setting up the workspace. An
example of a CRC illustrating this theme is shown below.

PR 7172: “Please set up checkstyle configuration according to our workspace set up
guide. Wildcard imports are not allowed.”

Tm1: Shorter code
The CRCs in theme Shorter code are related to recommendations for using built-in meth-

ods. The primary motivation for such recommendations is that shorter code is perceived to
be more maintainable. An example of CRC illustrating this theme is shown below.

PR 6434: “One of theDate.parse method overloads accepts alreadyOptional as param-
eter so you can make your code a bit easier and remove the ifPressent checks for Year
and month...” (Italics added for readability)

Tm2:Modern test style
With a topic share of 0.31, Modern test style is the most prevalent theme for CRCs

of merged PRs. The CRCs in this theme are related to recommendations for using JUnit’s
parametrized test functionality instead of duplicating test code. The size of the theme indicates
that contributing developers often have to be asked to reuse test code. The domain expert
observed that groups of contributing developers focused on improving the project’s test code,
which may explain the increase in testing-related discussions in CRCs. Similarly, when PRs
contribute to specific modules related to the core logic and user interface, reviewers often
ask them to provide test cases to evaluate the contribution. An example of a CRC illustrating
this theme is shown below.

PR 6479: “Thanks for adding somany tests. This is really good. I would propose to split
them a bit into two categories: tests for parsing and test for representation. The former
should take a string and test against a ‘AuthorList‘. The latter should take a ‘AuthorList‘
and test against a string...” (Italics added for readability)

Tm3: Simplify control flow
The CRCs in this theme focus on suggestions to simplify the code flow, e.g., by reducing

the number of code branches and lines of code in a code branch to improve maintainability.
An example of a CRC illustrating this theme is shown below.

PR 379: “I think it would be better to find out the exact Exception (should be easy with
the test) and then write a multi-catch block...”

123

 22 Page 16 of 34 Software Quality Journal (2025) 33:22

Fig. 5 Profiles for abandoned changes from the first iteration

Tm4: JavaFX architecture
The CRCs in this theme discuss the JavaFX10 architecture that is used in JabRef for user

interface design. An example of a CRC illustrating this theme is shown below.

PR 4227: “This works because the dialog is very simple but goes against the usual
strategy of JavaFX / MVVM. You should add properties in the ViewModel class... Please
have a look at the other JavaFX dialogs to see how this is done...” (Italics added for
readability)

Tm5: UX
TheCRCs in this theme deal with issues related tomeeting the needs of the user experience

expected from intermediate users of JabRef and the behavior of JabRef’s user interface on
different operating systems. An example of a CRC illustrating this theme is shown below.

PR 1390: “I find it counterintuitive that the same button sometimes resets only a few
bindings and sometimes all. Proposal: add a third column to the table which contains a
small reset button (only icon light gray by default dark gray on hovering the row)...”

Understanding abandoned andmerged changes
The results for the first iteration are shown in Fig. 5 for abandoned changes and Fig. 6

for merged changes. We observed nine profiles (P1 – P9) for the abandoned code changes
shown in Fig. 5. The most frequently discussed combination of themes, Java code quality
and External resources & path handling, is considered in five out of nine profiles containing
60% (23 out of 38) code changes. While we noted in Table 3, 38% CRCs relate to Java code
quality, interestingly, it is discussed in eight of nine profiles, suggesting that the theme is
frequently highlighted across distinct code changes. Preference locatlization with only one
percent more CRCs compared to Code formatting is discussed in twice as many profiles
as the latter, thus indicating that the topic impact of a theme and the number of profiles

10 https://openjfx.io/

123

https://openjfx.io/

Software Quality Journal (2025) 33:22 Page 17 of 34 22

Fig. 6 Profiles (23 out of 32) with more than five merged changes from the first iteration

discussing the theme is non-linear and may differ for themes. In Fig. 5, we also report the
CRCs belonging to each theme within the profile to depict the relationship between profiles
and CRCs.

In Fig. 6,we report 23 profiles (P1 –P23)with five ormoremerged changes. The frequently
discussed pair of themes, Shorter code with Modern test style and Modern test style with
Simplify control flow, is considered in eight out of 23 profiles.While we noted in Table 3, 31%
CRCs relate to Modern test style, it is highlighted in 70% (16 out of 23) profiles, suggesting
that the theme is significantly emphasized across distinct code changes. Furthermore, Profile
P1, with the highest number of code changes, focuses on only two themes, Shorter code and
Modern test style, with 15% (57 out of 388) of the code changes belonging to the profile.
Modern test style theme is most often discussed in combination with other themes and is
discussed across 16 profiles. Incidentally, the other four themes are highlighted across 11 out
of 23 profiles each, despite varied topic share. Figure 6, we further report the CRCs for each
theme within the profile to highlight the relationship between profiles and CRCs.

4.2.2 Second iteration (with BERTopic) themes

Using the steps described in Section 3.4, we generated four themes for the CRCs from
abandoned changes (TaB1–TaB4) and 19 themes for CRCs from merged changes (Tm B1–
Tm B19), respectively.

Table 4 summarizes the theme names assigned to the generated topics from the second
iteration and the corresponding topic share (Barua et al., 2014) for each theme. As can be
seen from Table 4, TaB1 is the most prominent theme within the abandoned PRs, while there

123

 22 Page 18 of 34 Software Quality Journal (2025) 33:22

Table 4 Manually assigned
themes (second iteration) for the
CRCs from abandoned
(TaB1–TaB4) and merged
(Tm B1–Tm B19) PRs together
with their topic share

Topic Manually assigned theme Topic share

TaB1 Basic JabRef style 0.87

TaB2 Code format 0.04

TaB3 Column handling 0.03

TaB4 Code indent 0.02

Tm B1 String methods 0.10

Tm B2 Agreement 0.09

Tm B3 Datatype bibentry 0.08

Tm B4 File handling in java & JabRef 0.07

Tm B5 Proper testing 0.07

Tm B6 Dialogs 0.05

Tm B7 Unlabeled topic 0.04

Tm B8 BibTeX fetchers 0.03

Tm B9 Comment 0.03

Tm B10 Localization 0.03

Tm B11 Scoping and naming 0.03

Tm B12 Logging 0.02

Tm B13 Git branch handling 0.02

Tm B14 Empty lines 0.02

Tm B15 Null handling 0.02

Tm B16 Removal 0.02

Tm B17 Comment javadoc 0.02

Tm B18 Handling storage 0.01

Tm B19 Concrete code suggestions 0.01

Note: Among the CRCs from abandoned changes, four percent of the
CRCs were considered outliers. Twenty-four percent of CRCs were con-
sidered outliers in the CRCs from merged changes

is a similar variation in the topic share for the themes from merged PRs, with Tm B1 having
the highest topic share.

Second iteration themes for CRCs from abandoned changes
In this subsection, we describe two of the four most prominent (based on the highest topic

share) themes from abandoned changes.

TaB1: Basic JabRef style
The CRCs in the theme Basic JabRef style relate to basic knowledge of JabRef’s coding

style The code reviewers often have to provide feedback on coding style and design-related
issues, making this theme the most prominent theme in the abandoned PRs. The domain
expert considered the theme to be generic and uninformative to improve the practices at
JabRef. The theme is similar to Ta5, which also focuses on code formatting-related issues
while also identifying design-related issues. An example of a CRC that illustrates this theme
is shown below.

123

Software Quality Journal (2025) 33:22 Page 19 of 34 22

PR 8762: “Please avoid code-describing comments instead try to write self-explaining
code and put your ratilonale into a comment.”

TaB3: Column handling
The CRCs in this theme deal with issues related to handling table columns in the JabRef

GUI. The domain expert considered the theme challenging to label yet meaningful for JabRef
GUI development since GUI is one of the largest packages of JabRef. With a topic share of
only 0.03, it is one of the smallest themes in the abandoned PRs.While the theme is similar to
Tm5, it focuses more on specific issues related to column handling from a user’s perspective.
An example of a CRC that illustrates this theme is shown below.

PR 7181: “I think this might lead to unused space on the right when one of the columns
has a higher preferred width than its maximum (because you don’t redistribute the
difference among the other columns).”

Second iteration themes for merged changes
Among the themes from merged PRs, the domain expert considered several topics to be

“basic” or common knowledge, thus being less informative, and observed that “anyone who
has spent 10 hours with the code base” can learn to apply them during software development.
An example of basic themes include Agreement (Tm B2) described by the “agreeing to code
changes.” An example of CRC belonging to this theme is provided below.

PR 1381: “Ok then we leave it like that for the moment and maybe fix it later.”

Other examples for themes frommerged changes include Empty Lines (Tm B14) described
as addressing code styling w.r.t empty lines, Null handling (Tm B15) focusing on suggestions
on properly dealing with null values, and Comment (Tm B9) including suggestions to write
proper code comments. Furthermore,Removal (Tm B16) andComment javadoc (Tm B17)were
also cited as coherent yet non-informative themes by the domain expert. A few examples of
the informative themes from merged PRs are given below.

TmB3: Datatype bibentry
With a topic share of 0.08, Datatype bibentry is the third largest theme for CRCs ofmerged

PRs. The CRCs in this theme focus on modifying and using the built-in datatype that models
a Bib(La)TeX entry in JabRef. The domain expert considered the theme easy to interpret
and meaningful since newcomers often need help understanding the built-in datatypes within
JabRef. An example of a CRC illustrating this theme is shown below.

PR 1596: “Better create a ‘Map<BibEntry List<File» expected‘ and compare that it
equals ‘results‘.” (Italics added for readability)

TmB5: Proper testing
The CRCs in this theme focus on suggestions for properly testing the submitted code for

edge cases and coverage, thus reducing the chances of bugs and defects in themain repository.
With a topic share of 0.07, it is the fourth largest theme in the merged PRs and is similar to
the Tm2 from the first iteration. The domain expert mentioned that reviewers often request

123

 22 Page 20 of 34 Software Quality Journal (2025) 33:22

additional tests to ensure high-quality source code is submitted for review. An example of a
CRC illustrating this theme is shown below.

PR 8531: “Could you add a new test case please? One with ‘day’ and one without
‘day’? - Both case(s) might appear in the wild and should be tested.” (Italics added for
readability)

TmB6: Dialogs
With a topic share of 0.05, Dialogs is the fifth most prominent theme for CRCs of merged

PRs. The CRCs in this theme deal with the proper use of JabRef’s prepared dialog classes to
display messages to the users. The theme shares similarities with the Tm5 since both themes
deal with the user interface while being different in their focus on specific dialog classes. An
example of a CRC illustrating this theme is shown below.

PR 4983: “Can you please try to pass the dialog service as a constructor argument
(reason: dependencies should be specified in the constructor)...”

Understanding abandoned andmerged changes
We report six profiles (P1 – P6) for the abandoned changes in Fig. 7. In the case of the

merged changes, we report 11 profiles in Fig. 8, with at least five or more PRs belonging to
the profile.

Profile P1 is the most frequently discussed profile, with 60% (23 out of 38) code changes
focusing on the Basic JabRef style. We note in Table 4, 86%CRCs belong to the Basic JabRef
style, and expectedly, it is discussed across five out of six profiles. The other three themes
with a collective 7% CRCs belonging to them are reflected in two profiles each.

We report 11 profiles in the merged changes, with five or more PRs belonging to each
profile, depicted in Fig. 8. These 11 profiles only discuss six of the 19 themes from themerged
changes. Themes with relatively high topic share, such as Agreement (Tm B2), Datatype
bibentry (Tm B3), and Dialogs (Tm B6) are discussed in PRs with less than five occurrences in
the merged changes. Compared to the first iteration, a smaller number of profiles contained
five or more PRs for merged changes. Profiles P1 – P4, with more than ten PRs each, discuss
only a single theme, with a relatively smaller number of CRCs belonging to each theme (see

Fig. 7 Profiles for abandoned changes from the second iteration

123

Software Quality Journal (2025) 33:22 Page 21 of 34 22

Fig. 8 Profiles (11 out of 23) with more than five merged changes from the second iteration

Table 4). Interestingly, String methods, with 10% CRCs belonging to it, and Removal, with
only 2% CRCs belonging to it, are the most frequently discussed themes across different
profiles. The domain expert considered Profile P1, with the highest number of PRs, to be too
diverse to be labeled.

4.3 RQ1: Interpretability andmeaningfulness of the identified themes

The domain expert considered the themes generated from the first iteration to be relatively
easier to interpret compared to the themes generated from the second iteration. The objective
coherence,measured usingCv , for the topics abandoned changeswas 0.35while the objective
coherence of topics from merged changes was marginally higher at 0.53. The domain expert
then named these topics as described in Section 3.7.

Regarding the generated themes from the first iteration, the domain expert considered
three-fourths of the themes to be easy to provide a name for. In contrast, one-fourth of the
identified themes needed to be more coherent. However, after reading CRCs from other
themes, it was also possible to name such themes.

According to the domain expert, the generated topics were informative to improve the
practices for JabRef. Themes such as Ta2, Ta4, Tm1 till Tm5 were highlighted as informative
to the practice at JabRef. However, the domain expert considered Ta1 as a generic theme.

The domain expert considered topics from the second iteration comparatively challenging
to interpret. Compared to the first iteration, the objective coherence, Cv , for the topics from
abandoned changes is significantly higher at 0.68. The objective coherence of topics from
merged changes was also higher at 0.65 compared to the first iteration. The domain expert
used the same process as the first iteration to name these topics described in Section 3.7.

Regarding the degree of interpretability of the generated topics from the second iteration,
the domain expert considered half of the topics easy to provide a name. In contrast, the
domain expert considered the other half of the topics challenging to interpret. One topic,
Tm B7, could not be interpreted as it was considered to be too diverse by the domain expert.
Our second iteration shows that higher objective coherence in terms of Cv did not correlate
with the interpretability of the topics based on the domain expert’s opinion.

123

 22 Page 22 of 34 Software Quality Journal (2025) 33:22

The domain expert perceived the themes from the first iteration as relatively easier to
interpret than the themes from the second iteration. While the second iteration yielded
topics with higher objective coherence scores, the domain expert considered themmore
challenging to interpret. This suggests that objective coherence (measure Cv) and per-
ceived interpretability by a domain expert may not be correlated.

4.4 RQ2: themes labeled using large-languagemodels

Assigning theme labels can be resource-intensive (Silva et al., 2024) as it requires the involve-
ment of the domain expert and, thus, also limits the number of approaches that canbe evaluated
by the domain expert. As mentioned in Section 3.7, we triangulated the manually assigned
themes by the domain expert using ChatGPT. The results from ChatGPT and the correspond-
ing theme name from manual labeling for the two iterations are provided in Tables 5 and 6,
showing that, in our case, automatically labeled themes by LLM closely resemble the manu-
ally assigned themes in several instances. Some examples of closely resembling themes in the
first iteration include Java code quality and Code architecture, which the LLM identified as
Refinement & documentation for code quality and Refinement & architecture enhancement,
respectively. In contrast, themes with low resemblance include External resources & path
handling, which the LLM identified as Refinement & precision in code development.

Similarly, in the second iteration, examples of closely resembling themes include Column
handling and File handling in java and JabRef, which LLM labeled as Table column width
management and Improving file and path handling in Java code, respectively. In contrast,
themes with low resemblance include Basic JabRef style and String methods, which the LLM
identified as Code quality and best practices and Code simplification and optimization.

For one of the unlabeled topics (Tm B7), we presented the domain expert with the theme
label generated by the LLM. However, the domain expert observed the theme label was

Table 5 Comparison of manually and automatically assigned themes for the CRCs from abandoned (top) and
merged (bottom) changes using the first iteration

Manual Automatic

Java Code Quality Refinement & Documentation for
Code Quality

Preferences localization User Interface Enhancement & Pref-
erence Handling

External resources & path handling Refinement & Precision in Code
Development

Code architecture Refinement & Architecture Enhance-
ment

Code formatting Code Standards Adherence and
Refactoring

Shorter Code Code Optimization & Best Practices

Modern test style Test Refinement & Maintenance

Simplify control flow Refinement for Enhanced Code Qual-
ity & Readability

JavaFX architecture Improving GUI Architecture &
Responsiveness

UX User Experience Enhancement &
Functionality Optimization

123

Software Quality Journal (2025) 33:22 Page 23 of 34 22

generic and uninformative. For one more topic (Tm B18), the domain expert used the LLM-
generated theme label to derive a suitable theme label during the interview, thus highlighting
the usefulness of LLM in supporting topic labeling tasks.

Our results open up further opportunities for automation in our approach to identifying
prevalent quality issues.

Manually assigning theme labels is resource-intensive. The study compared expert-
assigned themes with LLM-generated labels, showing a resemblance in several cases,
while other themes showed lower similarity. Our results suggest a potential for further
automation in identifying prevalent quality issues.

5 Discussion

We used two iterations, using the approach by Iftikhar et al. (2023) and the BERTopic-based
topic modeling method, to identify recurring quality issues in code changes by analyzing the
CRCs. In this section, we discuss the results of using the two topic modeling methods and
the implications for software development practice.

5.1 Performance of topic models

According to the domain expert, the STTMmethod in the first iteration leads to comparatively
more interpretable topics. Silva et al. (2024) compared four STTMmodels and reported that
GSDMMled tomore comprehensible (measured using the average number of names per topic
by human participants and the number of topics named) topics in their dataset. However, their
study did not evaluate any implementation of BERTopic; thus, a direct comparison with their
results cannot be made. Similar to the findings of the comparative study by Udupa et al.
(2022), BERTopic produced more coherent topics based on objective measures compared to
GSDMM. However, Udupa et al. (2022) did not consider human judgment.

One possible explanation for the difficulty in interpreting topics from the second iteration
may be the large number of topics generated. The domain expert indicated that the cognitive
load of naming four times as many topics for the merged case may be a factor that impacts
the interpretability of the topics in the second iteration. The number of topics generated was
one of the factors when selecting the embedding models used during the second iteration.
The higher objective coherence observed in the second iteration and the number of topics
resulted in “focused” topicswith a relatively small individual topic share. Thismay explain the
domain expert’s reflections regarding the less interesting topics for the state-of-the-practice at
JabRef.We achieved higher average objective coherence, i.e., average objective coherence of
topics from CRCs on abandoned and merged changes, with two different embedding models.
“CodeT5”11 provided an average objective coherence of 0.685, and “CodeBertA”12 produced
an average objective coherence of 0.68, compared to the average objective coherence of
0.66 using the embedding model described in Section 3.4. The quantitative results of the
parameters explored for both topic models, GSDMM and BERTopic, along with practical
considerations, are reported in (Iftikhar, 2024). We opted not to use both embedded models

11 https://huggingface.co/Salesforce/codet5-small
12 https://huggingface.co/huggingface/CodeBERTa-small-v1

123

https://huggingface.co/Salesforce/codet5-small
https://huggingface.co/huggingface/CodeBERTa-small-v1

 22 Page 24 of 34 Software Quality Journal (2025) 33:22

due to the relatively higher number of topics generated (the “Code T5” embedding model
produced 36 topics, and “Code BertA” generated 40 topics).

Based on the recommendations of Martin Borčin (2024), we considered using 20% as a
suitable percentage of outliers when selecting min cluster size and min sample size. However,
Martin Borčin (2024) achieved their results on generic datasets from newsgroup posts and
BBC articles and may not be a suitable choice for the analysis of CRCs.

Furthermore, we also evaluated an alternate clustering approach, KMeans, which does
not assume any outliers. However, KMeans produced an average objective coherence of
0.63 compared to the average objective coherence of 0.665 from using HDBScan. Thus, we
adopted an HDBScan-based approach.

5.2 Objective coherence & human assessment

The objective coherence measure used as a basis to select the topics presented to the domain
expert is another aspect that impacts the quality of themes generated and their interpretability.
While Röder et al. (2015) recommend using objective coherence,Cv , based on its correlation
with human rating, Silva et al. (2024) observed that none of the objective coherencemeasures
used in their study analyzing developer communication bear similarity to human compre-
hension of topics. Intuitively, comprehension is required for the interpretability of a topic.
The same result was observed in our results, where a higher theoretical objective coherence
did not translate to improved human interpretability of generated topics as assessed by the
domain expert. Since objective coherence measures are based on the statistical distribution
of topic terms and human assessment involves understanding the meaning of topic terms,
Silva et al. (2024) recommend using objective coherence measures in addition to human
assessment as both these measures complement each other.

Based on the results, we recommend using a lower number of topics and using LLMs
to determine the interpretability of generated topics before evaluation by a domain expert.
Future researchers can evaluate the interpretability of the topics when using KMeans-based
methods that do not create outliers.

5.3 Contextualization of code changes

Beyond the various choices in topic models and objective coherence measures, the analysis
of CRCs may be further improved by involving the context of the code changes. The CRCs
in a submitted code change under review are linked as they discuss the same snippet of code
changes. Tang et al. (2013) have suggested contextualization may improve classification
tasks. Aggregating the CRCs belonging to a code change into a single documentmay improve
the contextualization and the quality of the themes. However, contextualization impacts the
topic modeling methods available as aggregating CRCs in a single document may no longer
be short-text data. Due to the resource-intensive nature of involving the domain expert in
evaluating such an approach, we intend to assess such an approach as part of our future work.

5.4 Themes related to code quality

The common themes indicate a focus on long-term readability (such as Tm1, Ta5, TaB4,
Tm B14), testability (for example, Tm2, Tm B5,), and code structure (see Tm3, Tm4, TaB2). The
common themes in abandoned and merged changes can be broadly categorized as related to

123

Software Quality Journal (2025) 33:22 Page 25 of 34 22

maintainability, e.g., by focusing on code structure and utilizingwell-tested built-in functions,
which is aligned with existing taxonomies of issues found in CRCs (Mäntylä and Lassenius,
2009; Beller et al., 2014). Other themes identified relate to alternate code suggestions (such
as Tm B1, Tm B19) and code review process (examples include Tm B13, Tm B2) which has
been identified in the taxonomy proposed by Ochodek et al. (2022). The identified themes in
abandoned changes from the first iteration highlight issues related to the code architecture,
formatting of code, and code quality, while the themes from the second iteration focus on
code formatting and JabRef-specific styling. In contrast, the themes in merged changes from
the first iteration emphasize alternate suggestions that help to improve the issues related to
implementation choices related to JavaFXarchitecture, testing options, and built-in functions.
Meanwhile, the themes in the merged changes from the second iteration focus on testing,
alternate implementation suggestions, file handling, naming of variables, and process-related
issues.

5.5 Theme labels using LLMs

The identified themes need to be assigned an appropriate name, which is currently a manual
process requiring practitioners’ input, which limits the approach. An automated method that
aids in naming the identified themes, e.g., by using Large LanguageModels (OpenAI, 2023),
may be used as an initial step to shortlist results from an approach before involving the
domain expert, thus improving the efficiency of the topic naming steps.

5.6 Implications for state-of-practice

The domain expert observed two potential areas where the proposed analysis could improve
the state of the practice for JabRef. The identified themes can provide ideas to initiate focused
discussions on specific aspects of the JabRef discussion forums. By creating Q&As forms
for each identified theme, the discussion forums can be used to acquire important feedback
on identified themes, thus improving the interactivity of the discussion forums. Additionally,
JabRef provides guidelines to help newcomers.13 The identified themes can give concrete
ideas on which content to update in the guidelines to improve their effectiveness and address
some of the challenges faced by newcomers (Steinmacher et al., 2015).

5.7 Theme evolution

To analyze the evolution of common themes over time, we depicted scatter plots to show the
topic impact (Barua et al., 2014) over the months considered used by existing studies (Wen
et al., 2022; Iftikhar et al., 2023). While the evolution graphs may be helpful to visualize the
overall trend for a theme, the domain expert found it challenging to explain specific trends
in the topic evolution graphs, Fig. 9 depicts the evolution of theme Tm3 Simplify control
flow as an example. For a meaningful analysis of the topic evolution graphs, the domain
expert observed that more data is needed, e.g., which pull requests are active in those months
and who are the top contributors for the given month. The main reason is that different
contributors with different preferences were active in different periods of the project. Due to
the relatively small dataset, we chose not to empirically evaluate the themes version-wise as

13 https://devdocs.jabref.org/getting-into-the-code/guidelines-for-setting-up-a-local-workspace/

123

https://devdocs.jabref.org/getting-into-the-code/guidelines-for-setting-up-a-local-workspace/

 22 Page 26 of 34 Software Quality Journal (2025) 33:22

Fig. 9 Topic evolution for theme from CRCs on merged changes Tm3 Simplify control flow in JabRef

suggested previously (Iftikhar et al., 2023), as version-wise analysis for larger datasets may
lead to interesting results.

The data characteristics discussed in Section 4.1 indicate that there is a potential link
between the number of PRs submitted by developers and the outcome of the code review,
thus indicating that there may be other non-technical factors that impact the outcome of the
code review process, which is aligned with previous results (Thongtanunam et al., 2015; Fan
et al., 2018).

5.8 Potential applications for presented approach

The potential application of the presented approach includes analyzing the code review
comments in various scenarios, e.g., studying prevailing code quality issues, trend analysis
of code quality issues, and the impact of an intervention on code quality. Similar to the current
study’s setup, we can use the presented approach to compare the quality issues in two groups
of code changes based on the code review comments, e.g., studying quality issues from code
changes that take longer to merge compared to code changes that are merged quickly, or
studying differences in feedback given in projects following a monolithic design approach
and micro-services approach. For practitioners and researchers, we briefly summarize the
approach we followed in this study and discuss further applications.

1. Step 1: Collect CRCs; if one is interested in comparing groups of CRCs, split the CRCs
into separate subsets. In this study, we compared prevalent themes in merged and aban-
doned code changes. Therefore, we split the CRCs into comments made by reviewers on
merged code changes and comments on abandoned code changes.

2. Step 2: Using the scripts available in the replication package, pre-process CRCs and
generate topics for each dataset.

3. Step 3: A domain expert reads each topic’s top CRCs and top terms to assign a suitable
theme (see Section 3.7).

4. Step 4: Using the named themes, create profiles of prevalent quality issues for each
dataset.

123

Software Quality Journal (2025) 33:22 Page 27 of 34 22

6 Threats to validity

Weuse the classification suggested byRuneson andHöst (2009) to discuss the validity threats.

6.1 Reliability

We used automated tools and scripts to reduce the possibility of human error during data
curation to a minimum. To ensure that we only used CRCs as input from the extracted data,
we removed discussion replies from developers by removing the discussion comments where
the comment’s author was the same as the change author. We incorporated an embedding
model (Efstathiou et al., 2018) derived from posts in StackOverflow,14 a platform to discuss
software code issues, to improve the quality of the generated topics further. Our selected
word embedding model is based on software development terminologies, which we believe
is suitable.

Although studies have suggested removing highly frequent words to help create distinct
topics (Buntine and Mishra, 2014), this can remove important words (Xu et al., 2017). We
chose not to remove highly frequent words and short CRCs during preprocessing, as we con-
sider frequent words by reviewers and short CRCs relevant to the analysis performed in the
study. To support the repeatability of the study, we have provided a replication package con-
taining the extracted datasets and Python scripts used for the data extraction, preprocessing,
and topic modeling.

6.2 Internal validity

The CRC data extracted from the GitHub platform may only partially capture the recurring
quality issues. Some quality issues may be discussed using other modes of communication,
e.g., the discussion forums, which are not reflected using the approach used in the study.
However, since open-source communities extensively use GitHub for collaboration among
contributors, we sufficiently capture the recurring quality issues in JabRef. The structured
questionnaire shared with the domain expert was curated by the first author and reviewed
by the second author for content validity and clarity. However, the order of the data shared
with the domain expert for topic naming, e.g., the order of 20 CRCs and the order of the
topics presented, may introduce a response bias. Due to practical considerations, we could
only involve a single code developer from JabRef. Engaging additional practitioners from
JabRef could have further mitigated potential bias in the naming of topics and the subjective
assessment regarding their interpretability andmeaningfulness. Our dataset comprised CRCs
from 45 reviewers. We consider the number of reviewers involved to sufficiently ensure
diversity of review feedback which does not impact the code review comments provided.

6.3 Construct validity

While we have selected only topic stability (Agrawal et al., 2018) to select the appropriate
number of topics in the first iteration, other fitness measures, such as silhouette coefficient
(Panichella et al., 2013), may lead to different topics.

14 https://stackoverflow.com/

123

https://stackoverflow.com/

 22 Page 28 of 34 Software Quality Journal (2025) 33:22

6.4 External validity

Since we utilized only JabRef, other systems with different developers, reviewers, and review
practices may lead to distinct results. A large number of contributors to JabRef are engineer-
ing students. The language used in the CRCs may vary for other open-source and industrial
systems, limiting our results’ generalizability. Intuitively, the granularity of reviewer feed-
back varies between reviewers; thus, the number of reviewers involved in the review also
impacts the identified themes in CRCs. Further studies are needed using varied datasets and
accommodating differences in feedback due to individual reviewers.

7 Conclusions

We conducted a participatory case study using two design iterations to support practition-
ers through automation in identifying and profiling prevalent quality issues, using common
themes discussed in CRCs from abandoned and merged changes. We followed the approach
of an existing study (Iftikhar et al., 2023) in the first iteration and a BERTopic-based approach
in the second iteration.

The common themes named by the domain expert demonstrate that the approach can
help identify recurring code quality issues discussed in CRCs. We identified different themes
from CRCs in abandoned and merged changes in both iterations. The prevalent code quality
issues broadly aim to address the maintainability-focused issues in JabRef. Furthermore, we
observed unique profiles for code quality issues discussed in pull requests from abandoned
and merged changes. In addition, we outline the steps required to apply a similar approach
to other potential applications.

The results derived from the analysis of CRCs can help in improving the guidelines for
newdevelopers. They can assist in directing focused discussions in the developer forums, thus
potentially enhancing the current practices for JabRef. Althoughmany identified themeswere
easy to assign a name to by the domain expert in the first iteration, we observed a reduction in
the interpretability of the topics based on the domain expert’s opinion when using BERTopic,
even though it producedmore coherent themes based on the objectivemeasures of coherence.
More research is required to explore how and if objective measures that are more reflective
of the subjective assessment of coherence can be developed.

In future studies, we plan to explore variants of BERT (Liu et al., 2019), evaluating how the
percentage of outliers impacts the interpretability of the topics and exploring whether contex-
tualization of CRCs using code change improves the interpretability by human practitioners.
Furthermore, we plan to investigate whether Large Language Models (OpenAI, 2023) can
support assessing the interpretability of the generated topics. Using our approach, we plan
to use industrial datasets to improve development guidelines and data-driven discussions to
improve development practices.

Appendix

LLM prompt used

“You are an experienced code reviewer who has extensive knowledge of programming and
reading source code. Here are 10 code review comments that are separated by #####. You

123

Software Quality Journal (2025) 33:22 Page 29 of 34 22

will analyze each one of these code review comments and give them each a suitable title that
relates to the main theme each code review comment is discussing. Ensure that you give the
same number of titles as the code review comments. The 10 code review comments are: Here
we provide ten CRCs from each topic.”

Table 6 Comparison of manually and automatically assigned themes for the CRCs from abandoned (top) and
merged (bottom) changes using the second iteration

Manual Automatic

Basic JabRef style Code Quality and Best Practices

Code format Code Cleanup & Refactoring

Column handling Table Column Width Management

code-indent Consistency in Code Indentation

String methods Code Simplification andOptimization

Agreement General Feedback and Minor Adjust-
ments

Datatype bibentry Working with BibEntry Objects in
BibTeX/BibLaTeX Processing

File handling in Java and JabRef Improving File and Path Handling in
Java Code

Proper testing Improving Test Cases andMocking in
Java Code

Dialogs Improving Dialog Management and
Refactoring in JavaFX Applications

T7 (Unlabelled Topic) Enhancing JabRef Codebase through
Improved Configuration Manage-
ment, Testing, Code Quality, Error
Handling, and General Code Mainte-
nance

BibTeX fetchers Enhancing Exception Handling and
Fetcher Implementation in Code

Comment Improving Code Clarity and Doc-
umentation through Effective Com-
menting

Localization Improving Localization and Transla-
tion Consistency in Code

Scoping & naming Best Practices for Method and Class
Design in Object-Oriented Program-
ming

Logging Best Practices for Logging & Error
Handling in Software Development

Git branch handling Managing Merge Processes and
Resolving Conflicts in Version Con-
trol

Empty-lines Code Cleanup & Simplification

Null-handling Effective Null Handling in Java

Removal Code Cleanup and Removal

Comment Javadoc Documentation and Code Quality

Handling storage Enhancing Database Handling in the
Codebase

Concrete code suggestions Documentation & Code Annotations

123

 22 Page 30 of 34 Software Quality Journal (2025) 33:22

Acknowledgements We would like to thank Dr. Mirosław Ochodek from Poznan University of Technology
for their valuable consultation and insightful discussions that greatly assisted the research.

Author Contributions Umar Iftikhar, Jürgen Börstler, and Nauman Bin Ali contributed to the study’s concep-
tion, methodology, and visualization. Umar Iftikhar carried out data curation and software development, and
the other authors discussed and reviewed all the steps. Umar Iftikhar wrote the first draft of the manuscript,
and all authors commented on intermediate versions. Oliver Kopp contributed to the validation of the results.

Funding Open access funding provided by Blekinge Institute of Technology. This work has been supported by
ELLIIT, aStrategicResearchAreawithin IT andMobileCommunications, fundedby theSwedishGovernment.
The work has also been supported by a research grant for the GIST project (reference number 20220235) from
the Knowledge Foundation in Sweden.

Data Availability The Python scripts and datasets are available online https://doi.org/10.5281/zenodo.
13453045.

Declarations

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Agrawal, A., Fu, W., & Menzies, T. (2018). What is wrong with topic modeling? And how to fix it using
search-based software engineering. Information and Software Technology, 98, 74–88.

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., & Schneider, K. A. (2020). Caps: a supervised technique
for classifying stack overflow posts concerning api issues. Empirical Software Engineering, 25, 1493–
1532.

Aletras,N., Stevenson,M. (2013). Evaluating topic coherence usingdistributional semantics. In: In proceedings
of the 10th international conference on computational semantics, pp. 13–22

Arafat, Y., Shamma, S.S.H. (2020). Categorizing review comments by mining software repositories. Interna-
tional Conference on Advances in Computing and Data Sciences, 12

Baca, D., & Petersen, K. (2013). Countermeasure graphs for software security risk assessment: An action
research. Journal of Systems and Software, 86(9), 2411–2428.

Bacchelli, A., Bird, C. (2013). Expectations, outcomes, and challenges of modern code review. In: Proceedings
of the 35th international conference on software engineering, pp. 712–721

Barua, A., Thomas, S. W., & Hassan, A. E. (2014). What are developers talking about? An analysis of topics
and trends in stack overflow. Empirical Software Engineering, 19, 619–654.

Bavota, G., Russo, B. (2015). Four eyes are better than two: On the impact of code reviews on software
quality. In: Proceedings of the 31st ieee international conference on software maintenance and evolution,
pp. 81–90

Beller, M., Bacchelli, A., Zaidman, A., Juergens, E. (2014). Modern code reviews in open-source projects:
which problems do they fix? In: Proceedings of the 11th working conference on mining software repos-
itories, pp. 202–211

Biggers, L. R., Bocovich, C., Capshaw, R., Eddy, B. P., Etzkorn, L. H., & Kraft, N. A. (2014). Configuring
latent dirichlet allocation based feature location. Empirical Software Engineering, 19, 465–500.

123

https://doi.org/10.5281/zenodo.13453045
https://doi.org/10.5281/zenodo.13453045
http://creativecommons.org/licenses/by/4.0/

Software Quality Journal (2025) 33:22 Page 31 of 34 22

Bosu, A., Carver, J. C., Bird, C., Orbeck, J., & Chockley, C. (2017). Process aspects and social dynamics of
contemporary code review: Insights from open source development and industrial practice at microsoft.
Proceedings of the IEEE Transactions on Software Engineering, 43(1), 56–75.

Bouma, G. (2009) Normalized (pointwise) mutual information in collocation extraction. In: In Proceedings
of german society of computational linguistics & language technology, 30, pp. 31–40

Buntine, W.L., Mishra, S. (2014). Experiments with non-parametric topic models. In: Proceedings of the 20th
ACM SIGKDD international conference on knowledge discovery and data mining, pp. 881–890

Devlin, J., Chang, M.-W., Lee, K., Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers
for language understanding. arXiv:1810.04805

Efstathiou, V., Chatzilenas, C., Spinellis, D. (2018). Word embeddings for the software engineering domain.
In: Proceeding of the 15th international conference on mining software repositories, pp. 38–41

Fan, Y., Xia, X., Lo, D., & Li, S. (2018). Early prediction of merged code changes to prioritize reviewing
tasks. Empirical Software Engineering, 23(6), 3346–3393.

Fregnan, E., Petrulio, F., Di Geronimo, L., & Bacchelli, A. (2022). What happens in my code reviews? An
investigation on automatically classifying review changes. Empirical Software Engineering, 27, 89.

Gottigundala, T., Sereesathien, S., Da Silva, B. (2021). Qualitatively Analyzing PR Rejection Reasons from
Conversations in Open-Source Projects. In: Proceedings of the 13th IEEE/ACM international workshop
on cooperative and human aspects of software engineering, pp. 109–112

Grootendorst, M. (2020). BERTopic: Neural topic modeling with a class-based TF-IDF procedure.
arXiv:2203.05794

Gunawardena, S., Tempero, E., & Blincoe, K. (2023). Concerns identified in code review: A fine-grained,
faceted classification. Information and Software Technology,153, 107054

Han, J., Shihab, E., Wan, Z., Deng, S., & Xia, X. (2020). What do programmers discuss about deep learning
frameworks. Empirical Software Engineering, 25, 2694–2747.

Haque, M.U., Iwaya, L.H., Babar, M.A. (2020) Challenges in docker development: A large-scale study using
stack overflow. In: Proceedings of the 14th international symposium on empirical software engineering
and measurement, pp. 1–11

Henß, S., Monperrus, M., Mezini, M. (2012). Semi-automatically extracting faqs to improve accessibility
of software development knowledge. In: 2012 34th International conference on software engineering
(ICSE), IEEE, pp. 793–803

Iftikhar, U. (2024). Practical considerations and solutions in nlp-based analysis of code review comments-
an experience report. In: International conference on product-focused software process improvement,
Springer, pp. 342–351.

Iftikhar, U., Börstler, J., Ali, N.B. (2023). On potential improvements in the analysis of the evolution of
themes in code review comments. In: 49th Euromicro conference on software engineering and advanced
applications (SEAA), pp. 340–347

Johnson, B., Song, Y., Murphy-Hill, E., Bowdidge, R. (2013). Why don’t software developers use static
analysis tools to find bugs? In: Proceedings of the 35th international conference on software engineering,
pp. 672–681

Kindon, S., Pain, R., Kesby, M. (2007). Participatory action research approaches and methods. Connecting
people, participation and place. Abingdon: Routledge 260

Kononenko, O., Rose, T., Baysal, O., Godfrey, M., Theisen, D., De Water, B. (2018). Studying pull request
merges: a case study of shopify’s active merchant. In: Proceedings of the 40th international conference
on software engineering: software engineering in practice, pp. 124–133

Kopp, O., Snethlage, C. C., & Schwentker, C. (2023). JabRef: BibTeX-based literature management software.
TUGboat, 44(3), 441–447.

Li, Z., Yu,Y., Yin, G.,Wang, T., Fan,Q.,Wang,H. (2017). Automatic classification of review comments in pull-
based development model. In: Proceedings of the 29th international conference on software engineering
and knowledge engineering, pp. 572–577

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.
(2019). Roberta: A robustly optimized bert pretraining approach. arXiv:1907.11692

Mäntylä, M. V., & Lassenius, C. (2009). What types of defects are really discovered in code reviews? IEEE
Transactions on Software Engineering, 35(3), 430–448.

Martin Borčin, J.M.J. (2024). Optimizing BERTopic: Analysis and reproducibility study of parameter influ-
ences on topic modeling. In: Proceedings of the 46th european conference on information retrieval,
14611. Springer, ???

McConnell, S. (2004). Code Complete. Boston: Pearson Education.
McInnes, L., Healy, J., Saul, N., & Großberger, L. (2018). Umap: Uniform manifold approximation and

projection. Journal of Open Source Software, 3(29), 861.

123

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2203.05794
http://arxiv.org/abs/1907.11692

 22 Page 32 of 34 Software Quality Journal (2025) 33:22

McIntosh, S., Kamei, Y., Adams, B., Hassan, A.E. (2014). The impact of code review coverage and code
review participation on software quality: A case study of the qt, vtk, and itk projects. In: Proceedings of
the 11th working conference on mining software repositories, pp. 192–201

Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martínez-Perez, F. E., & Soubervielle-Montalvo, C. (2017).
Source code metrics: A systematic mapping study. Journal of Systems and Software, 128, 164–197.

Ochodek, M., Staron, M., Meding, W., Söder, O. (2022). Automated code review comment classification to
improve modern code reviews. In: Proceedings of the 14th international conference on software quality,
pp. 23–40

Olsson, T., Ericsson, M., Wingkvist, A. (2017). The relationship of code churn and architectural violations in
the open source software jabref. In: Proceedings of the 11th european conference on software architecture:
companion proceedings, pp. 152–158

OpenAI. (2023). GPT-4 Technical Report. arXiv:2303.08774 [cs]
Paixao, M., Krinke, J., Han, D., Ragkhitwetsagul, C., & Harman, M. (2019). The impact of code review on

architectural changes. IEEE Transactions on Software Engineering, 47(5), 1041–1059.
Panichella, A. (2021). A Systematic Comparison of search-Based approaches for LDA hyperparameter tuning.

Information and Software Technology,130, 106411
Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshynanyk, D., De Lucia, A. (2013) How to effectively use

topic models for software engineering tasks? an approach based on genetic algorithms. In: Proceedings
of the 35th international conference on software engineering, pp. 522–531

Papadakis, N., Patel, A., Gottigundala, T., Garro, A., Graham, X., Da Silva, B. (2020). Why Did your PR Get
Rejected?: Defining Guidelines for Avoiding PR Rejection in Open Source Projects. In: Proceedings of
the IEEE/ACM 42nd international conference on software engineering workshops, pp. 165–168

Qiang, J., Qian, Z., Li, Y., Yuan, Y., & Wu, X. (2020). Short text topic modeling techniques, applications, and
performance: a survey. IEEE Transactions on Knowledge and Data Engineering, 34(3), 1427–1445.

Röder,M., Both,A.,Hinneburg,A. (2015). Exploring the space of topic coherencemeasures. In: In Proceedings
of the eighth ACM international conference on web search and data mining, pp. 399–408

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study research in software
engineering. Empirical Software Engineering, 14, 131–164.

Schneider, N., Shouei, S., Ghantous, S., Feldman, E. (2023). Hate Speech Targets Detection in Parler using
BERT. In: In proceedings of the 6th workshop on online abuse and harms

Silva, C.C., Galster, M., Gilson, F. (2024). Applying short text topic models to instant messaging communi-
cation of software developers. Journal of Systems and Software, 112111

Silva, C. C., Galster, M., & Gilson, F. (2021). Topic modeling in software engineering research. Empirical
Software Engineering, 26(6), 1–62.

Souza, L.B., Campos, E.C.,Madeiral, F., Paixão,K., Rocha,A.M.,&AlmeidaMaia,M. (2019).Bootstrapping
cookbooks for apis from crowd knowledge on stack overflow. Information and Software Technology, 111,
37–49.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., & Redmiles, D. F. (2015). A systematic literature review on
the barriers faced by newcomers to open source software projects. Information and Software Technology,
59, 67–85.

Sun, X., Li, B., Leung, H., Li, B., & Li, Y. (2015). Msr4sm: Using topic models to effectively mining software
repositories for software maintenance tasks. Information and Software Technology, 66, 1–12.

Tang, J., Zhang, M., Mei, Q. (2013). One theme in all views: modeling consensus topics in multiple contexts.
In: In Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data
mining, pp. 5–13

Thongtanunam, P., Tantithamthavorn, C., Kula, R.G., Yoshida, N., Iida, H., Matsumoto, K.-i. (2015). Who
should review my code? a file location-based code-reviewer recommendation approach for modern code
review. In: Proceedings of the IEEE 22nd international conference on software analysis, evolution, and
reengineering (SANER), pp. 141–150

Turzo, A.K., Faysal, F., Poddar, O., Sarker, J., Iqbal, A., Bosu, A. (2023). Towards Automated Classification
of Code Review Feedback to Support Analytics. In: Proceedings of the 17th ACM/IEEE international
symposium on empirical software engineering and measurement (2023)

Udupa, A., Adarsh, K.N., Aravinda, A., Godihal, N.H., Kayarvizhy, N. (2022). An Exploratory Analysis of
GSDMMand BERTopic on Short Text TopicModelling. In: Fourth international conference on cognitive
computing and information processing, pp. 1–9

Unterkalmsteiner, M., Badampudi, D., Britto, R., Ali, N.B. (2024). Help me to understand this commit! - A
vision for contextualized code reviews. CoRR arXiv:2402.09528

Vassallo, C., Panichella, S., Palomba, F., Proksch, S., Gall, H. C., & Zaidman, A. (2020). How developers
engage with static analysis tools in different contexts. Empirical Software Engineering, 25, 1419–1457.

123

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2402.09528

Software Quality Journal (2025) 33:22 Page 33 of 34 22

Wang, Q., Xia, X., Lo, D., & Li, S. (2019). Why is my code change abandoned? Information and Software
Technology, 110, 108–120.

Wen, R., Lamothe, M., McIntosh, S. (2022). How does code reviewing feedback evolve?: A longitudinal study
at Dell EMC. In: Proceedings of the 44th international conference on software engineering: software
engineering in practice, pp. 151–160

Xu, Y., Yin, Y., & Yin, J. (2017). Tackling topic general words in topic modeling. Engineering Applications
of Artificial Intelligence, 62, 124–133.

Yin, J., Wang, J. (2014). A dirichlet multinomial mixture model-based approach for short text clustering. In:
Proceedings of the 20th international conference on knowledge discovery and data mining, pp. 233–242

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Umar Iftikhar is a Ph.D. candidate at the Blekinge Institute of Tech-
nology (BTH), Sweden. His research interests include source code
quality and the analysis of code review artifacts to support practition-
ers in improving software quality and software processes.

Jürgen Börstler is a professor of software engineering at Blekinge
Institute of Technology (BTH), Sweden. He received a Ph.D. in com-
puter science from Aachen University of Technology (RWTH), Ger-
many. Prof. Börstler is a member of SERL-Sweden, the Software
Engineering Research and Education Lab at BTH and a senior mem-
ber of the Swedish Requirements Engineering Network. Furthermore,
he is a founding member of the Scandinavian Pedagogy of Program-
ming Network. His research interests are in behavioral software engi-
neering, research methods, software process improvement, software
quality, program comprehension, and computer science education.

123

 22 Page 34 of 34 Software Quality Journal (2025) 33:22

Nauman Bin Ali is a senior lecturer at Blekinge Institute of Tech-
nology. He is involved in empirical research in the field of software
engineering. His research interests include using AI and ML for soft-
ware engineering, lean software development, software testing, soft-
ware process simulation, software metrics, and evidence-based soft-
ware engineering. He received his Ph.D. (2015) in software engineer-
ing from Blekinge Institute of Technology, Sweden.

Dr. Oliver Kopp researches the intersections of software engineering,
business process management (BPM), cloud computing, and IoT, con-
tributing to both academia and industry. Currently, he researches in
the field of software-defined vehicles. In the open-source community,
he actively maintains and contributes to several projects, including
JabRef and the Markdown Architectural Decision Records.

123

	Supporting the identification of prevalent quality issues in code changes by analyzing reviewers' feedback
	Abstract
	1 Introduction
	2 Related work
	2.1 Manual categorization of CRCs
	2.2 Automation to support CRCs analysis
	2.3 Investigations of factors behind abandoned and merged code changes

	3 Methodology
	3.1 Case project and domain expert
	3.2 Datasets
	3.3 First iteration: with GSDMM
	3.3.1 Short text topic models
	3.3.2 Parameter selection

	3.4 Second iteration: with BERtopic
	3.5 Objective coherence measures
	3.6 Data collection
	3.7 Topic naming & subjective assessment
	3.8 Automated topic naming using LLMs
	3.9 Understanding abandoned and merged changes

	4 Results and analysis
	4.1 Data characteristics
	4.2 Themes identified using topic models
	4.2.1 First Iteration (with GSDMM) themes
	4.2.2 Second iteration (with BERTopic) themes

	4.3 RQ1: Interpretability and meaningfulness of the identified themes
	4.4 RQ2: themes labeled using large-language models

	5 Discussion
	5.1 Performance of topic models
	5.2 Objective coherence & human assessment
	5.3 Contextualization of code changes
	5.4 Themes related to code quality
	5.5 Theme labels using LLMs
	5.6 Implications for state-of-practice
	5.7 Theme evolution
	5.8 Potential applications for presented approach

	6 Threats to validity
	6.1 Reliability
	6.2 Internal validity
	6.3 Construct validity
	6.4 External validity

	7 Conclusions
	Appendix
	LLM prompt used

	Acknowledgements
	References

