Laiq, M., Ali, N. b., Börstler, J. & Engström, E. (2025). A comparative analysis of ML techniques for bug report classification. Journal of Systems and Software, 227, Article ID 112457. Tran, H. K., Ali, N. b., Unterkalmsteiner, M. & Börstler, J. (2025). A proposal and assessment of an improved heuristic for the Eager Test smell detection. Journal of Systems and Software, 226, Article ID 112438. Thode, L., Iftikhar, U. & Mendez, D. (2025). Exploring the use of LLMs for the selection phase in systematic literature studies. Information and Software Technology, 184, Article ID 107757. Tran, H. K., Ali, N. b., Unterkalmsteiner, M., Börstler, J. & Chatzipetrou, P. (2025). Quality attributes of test cases and test suites - importance & challenges from practitioners' perspectives. Software quality journal, 33(1), Article ID 9. Iftikhar, U., Börstler, J., Ali, N. b. & Kopp, O. (2025). Supporting the identification of prevalent quality issues in code changes by analyzing reviewers’ feedback. Software quality journal, 33(2), Article ID 22. Tran, H. K. (2025). Towards Reliable Eager Test Detection: Practitioner Validation and a Tool Prototype. In: : . Paper presented at 8th Workshop on Validation, Analysis and Evolution of Software Tests, Montréal, Canada, March 04, 2025. Börstler, J., Ali, N. b., Petersen, K. & Engström, E. (2024). Acceptance behavior theories and models in software engineering — A mapping study. Information and Software Technology, 172, Article ID 107469. Rico, S., Ali, N. b., Engström, E. & Höst, M. (2024). Experiences from conducting rapid reviews in collaboration with practitioners — Two industrial cases. Information and Software Technology, 167, Article ID 107364. Unterkalmsteiner, M., Badampudi, D., Britto, R. & Ali, N. b. (2024). Help Me to Understand this Commit! - A Vision for Contextualized Code Reviews. In: Proceedings - 2024 1st IDE Workshop, IDE 2024: . Paper presented at 1st Integrated Development Environments Workshop, IDE 2024, Lisbon, April 20 2024 (pp. 18-23). Association for Computing Machinery (ACM)Laiq, M., Ali, N. b., Börstler, J. & Engström, E. (2024). Industrial adoption of machine learning techniques for early identification of invalid bug reports. Empirical Software Engineering, 29(5), Article ID 130.