Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Addressing Local and Regional Recharging Demand: Allocation of Charging Stations through Iterative Route Analysis
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0009-0007-0868-9868
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-3707-2780
Malmö Universitet.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-3824-0942
2024 (engelsk)Inngår i: Procedia Computer Science / [ed] Elhadi Shakshuki, Elsevier, 2024, Vol. 238, s. 65-72Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

The emergence of electric vehicles offers a promising approach to achieving a more sustainable transportation system, given their lower production of direct emissions. However, the limited driving range and insufficient public recharging infrastructure in some areas hinder their competitiveness against traditional vehicles with internal combustion engines. To address these issues, this paper introduces an ``iterative route cover optimization method'' to suggest  charging station locations in high-demand regions. The method samples routes from a route choice set and optimally locates at least one charging station along each  route. Through iterative resampling and optimal allocation of charging stations, the method identifies the potential recharging demand in a location or a region. We demonstrate the method's applicability to a transportation network of the southern part of Sweden. The results show that the proposed method is capable to suggest locations and geographical regions where the recharging demand is potentially high. 

sted, utgiver, år, opplag, sider
Elsevier, 2024. Vol. 238, s. 65-72
Serie
Procedia Computer Science, ISSN 1877-0509
Emneord [en]
Allocation Strategy, Charging Station, Electric Vehicle, Recharging Demand
HSV kategori
Forskningsprogram
Systemteknik
Identifikatorer
URN: urn:nbn:se:bth-26715DOI: 10.1016/j.procs.2024.05.197Scopus ID: 2-s2.0-85199527923OAI: oai:DiVA.org:bth-26715DiVA, id: diva2:1883509
Konferanse
15th International Conference on Ambient Systems, Networks and Technologies (ANT), Hasselt, Belgium, April 23-25, 2024
Tilgjengelig fra: 2024-07-10 Laget: 2024-07-10 Sist oppdatert: 2024-09-25bibliografisk kontrollert
Inngår i avhandling
1. Data-Driven Modeling of Transportation Systems: Methodological Approaches and Real World Applications
Åpne denne publikasjonen i ny fane eller vindu >>Data-Driven Modeling of Transportation Systems: Methodological Approaches and Real World Applications
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Traffic analysis is vital for enhancing the performance of transportation systems, where continuous evaluation of traffic states helps responsible road authorities detect and address issues. High-quality traffic data is key to analysis, as it aids in planning and investments. Traditionally, traffic data collection has been costly and limited. Nowadays, connected vehicles and mobile phones have transformed this process, enabling traffic data collection across large geographic regions without the need for dedicated measurement devices. The availability of large-scale and detailed traffic data allows for in-depth analysis using mathematical models. This thesis develops models to utilize available traffic data for transportation system improvements, aiming to enhance traffic conditions and road user experience. It utilizes data from link flows and travel times, applying models over large geographic areas. The thesis addresses transportation engineering issues through data-driven methods. The thesis proposes two methods for allocating electric vehicle charging stations using optimization and route sampling techniques. It introduces a new index for assessing travel time reliability. It shows how clustering analysis of descriptive travel time statistics can be used to detect different traffic states. Furthermore, this thesis presents a statistical model to estimate link flow propagation using measured link flow data, analyzing traffic influence across surrounding areas. The thesis also uses traffic simulation, focusing on combining speed cameras and probe vehicles for data collection and developing a model to identify probable routes based on hourly link flows. The thesis results highlight the importance of data-driven models in optimizing transportation systems and improving road user travel experiences.

sted, utgiver, år, opplag, sider
Karlskrona: Blekinge Tekniska Högskola, 2024. s. 232
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2024:14
Emneord
traffic analysis, data-driven models, mathematical models, link flow data, travel time data
HSV kategori
Forskningsprogram
Systemteknik
Identifikatorer
urn:nbn:se:bth-26902 (URN)978-91-7295-487-8 (ISBN)
Disputas
2024-11-14, J1630, Valhallavägen 1, Karlskrona, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-09-25 Laget: 2024-09-11 Sist oppdatert: 2024-10-14bibliografisk kontrollert

Open Access i DiVA

fulltext(1993 kB)68 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 1993 kBChecksum SHA-512
a11f78c49f28d5ae93041b19ae218927b7f1d9a73f14f3b20e98bb9b67b935b66473f0ed77d326a674eb09c564743b026c00478df9cf4a994ad4c00e9a69ff64
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fulltekstScopus

Person

Fredriksson, HenrikDahl, MattiasLövström, Benny

Søk i DiVA

Av forfatter/redaktør
Fredriksson, HenrikDahl, MattiasLövström, Benny
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 68 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 377 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf