Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Homogeneity in commutative graded rings
University of Maragheh, IRN.ORCID-id: 0000-0002-8952-1309
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap. (Algebra & Geometri)ORCID-id: 0000-0001-8095-0820
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

In this paper, we establish several new results on commutative G-graded rings where G is a totally ordered abelian group. McCoy’s theorem and Armendariz’ theorem are classical results in the theory of polynomial rings. We generalize both of these celebrated theorems to the more general setting of G-graded rings and simultaneously to the setting of ideals rather than to that of elements. Next, we give a complete characterization of invertible elements in G-graded rings. We generalize Bergman’s famous theorem (which asserts that the Jacobson radical of a Z-graded ring is a graded ideal) to the setting of G-graded rings and then proceed to give a natural and quite elementary proof of it. This generalization allows us to show that an abelian group is a totally ordered group if and only if the Jacobson radical of every ring graded by that group is a graded ideal, or equivalently, nonzero idempotents of every ring graded by that group are homogeneous of degree zero. Finally, some topological aspects of graded prime ideals are investigated.

Nyckelord [en]
Generalized McCoy theorem, Generalized Armendariz theorem, Homogeneity, Jacobson radical, Totally ordered abelian group, Idempotent
Nationell ämneskategori
Algebra och logik
Forskningsämne
Matematik med tillämpningar
Identifikatorer
URN: urn:nbn:se:bth-22163OAI: oai:DiVA.org:bth-22163DiVA, id: diva2:1598897
Tillgänglig från: 2021-09-29 Skapad: 2021-09-29 Senast uppdaterad: 2025-06-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

arXiv

Person

Öinert, Johan

Sök vidare i DiVA

Av författaren/redaktören
Tarizadeh, AbolfazlÖinert, Johan
Av organisationen
Institutionen för matematik och naturvetenskap
Algebra och logik

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 102 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf