Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On Optimal Channel Uses in Ultra-Reliable Short-Packet Relaying Communications
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0002-1730-9026
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.ORCID-id: 0000-0003-3604-2766
Queen's University Belfast, GBR.
2022 (Engelska)Ingår i: ICCE 2022 - 2022 IEEE 9th International Conference on Communications and Electronics, Institute of Electrical and Electronics Engineers (IEEE), 2022, s. 13-17Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

To support ultra-reliable low latency communication (URLLC) services in fifth-generation mobile networks, short-packet transmission is essential. However, due to the limited packet size, errors cannot be reduced to arbitrarily low levels for a given coding rate as for conventional communication systems covered by the Shannon theory. In this paper, we consider URLLC in dual-hop decode-and-forward relaying networks where the channel in each hop varies fast. A simple but efficient optimization of the block lengths is performed to minimize the block error rate (BLER) of the proposed system. In particular, we deploy machine learning models using the linear regression and normalized method to determine the optimal fraction of channel uses for the transmission over each hop. Numerical results show that the BLER of the consider relaying system with optimal block lengths for each hop based on the machine learning model outperforms conventional relaying systems with equal block lengths. © 2022 IEEE.

Ort, förlag, år, upplaga, sidor
Institute of Electrical and Electronics Engineers (IEEE), 2022. s. 13-17
Nyckelord [en]
Machine learning, Block error rates, Block lengths, Communication service, Low-latency communication, Machine learning models, Optimal channels, Packet size, Packet transmissions, Relaying systems, Short packets, Packet networks
Nationell ämneskategori
Telekommunikation
Identifikatorer
URN: urn:nbn:se:bth-23759DOI: 10.1109/ICCE55644.2022.9852051Scopus ID: 2-s2.0-85139190143ISBN: 9781665497442 (tryckt)OAI: oai:DiVA.org:bth-23759DiVA, id: diva2:1705163
Konferens
9th IEEE International Conference on Communications and Electronics, ICCE 2022, Nha Trang City, 27-29 July 2022
Tillgänglig från: 2022-10-21 Skapad: 2022-10-21 Senast uppdaterad: 2022-12-13Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Chu, Thi My ChinhZepernick, Hans-Juergen

Sök vidare i DiVA

Av författaren/redaktören
Chu, Thi My ChinhZepernick, Hans-Juergen
Av organisationen
Institutionen för datavetenskap
Telekommunikation

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 214 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf