Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Improving The Accuracy Of Plant Leaf Disease Detection And Classification In Images Of Plant Leaves:: By Exploring Various Techniques with the MobileNetV2 Model
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datavetenskap.
2023 (Engelska)Självständigt arbete på grundnivå (kandidatexamen), 10 poäng / 15 hpStudentuppsats (Examensarbete)
Abstract [en]

In the most recent years, many deep learning models have been used to identify and classify diseases of plant leaves by inputting plant leaf images as input to the model. However, there is still a gap in research on how to improve the accuracy of the deep learning models of plant leaf diseases. This thesis is about investigating various techniques for improving the MobileNetV2 model's accuracy for plant disease detection in leaves and classification. These techniques involved adjusting the learning rate, adding additional layers, and various data-augmented operations. The results of this thesis have shown that these techniques can significantly improve the accuracy of the model, and the best results can be achieved by using random rotation and crop data augmentation. After adding random rotation and crop data augmentation to the model, it achieved an accuracy of 94%, a precision of 91%, a recall of 96%, and an F1-score of 95%. This shows that the proposed techniques can be used to improve the accuracy of plant leaf disease detection and classification models, which can help farmers identify and treat plant diseases.

Ort, förlag, år, upplaga, sidor
2023. , s. 72
Nyckelord [en]
Additional layers, data augmentations, learning rate adjustment, MobileNetV2 model, plant leaf disease detection.
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:bth-25064OAI: oai:DiVA.org:bth-25064DiVA, id: diva2:1778236
Ämne / kurs
DV1478 Kandidatarbete i datavetenskap
Utbildningsprogram
DVGDT Plan för kvalifikation till kandidatexamen inom datavetenskap 60,0 hp
Handledare
Examinatorer
Tillgänglig från: 2023-07-05 Skapad: 2023-06-30 Senast uppdaterad: 2023-07-07Bibliografiskt granskad

Open Access i DiVA

Improving the Accuracy of Plant Leaf Disease Detection and Classification in Images of Plant Leaves: By Exploring Various Techniques with the MobileNetV2 Model(1897 kB)1099 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 1897 kBChecksumma SHA-512
a3a9abf57fa7a4e9e10fcde7d27d8df7a8172c52776b24fc2b8a6e421dbb76ee9fa600f1ab09837b9d6cbfc845c6ca14d1647d46f9de9cc685ef2cefad43f601
Typ fulltextMimetyp application/pdf

Av organisationen
Institutionen för datavetenskap
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 1105 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 683 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf