Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Addressing Local and Regional Recharging Demand: Allocation of Charging Stations through Iterative Route Analysis
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0009-0007-0868-9868
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-3707-2780
Malmö Universitet.
Blekinge Tekniska Högskola, Fakulteten för teknikvetenskaper, Institutionen för matematik och naturvetenskap.ORCID-id: 0000-0003-3824-0942
2024 (Engelska)Ingår i: Procedia Computer Science / [ed] Elhadi Shakshuki, Elsevier, 2024, Vol. 238, s. 65-72Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

The emergence of electric vehicles offers a promising approach to achieving a more sustainable transportation system, given their lower production of direct emissions. However, the limited driving range and insufficient public recharging infrastructure in some areas hinder their competitiveness against traditional vehicles with internal combustion engines. To address these issues, this paper introduces an ``iterative route cover optimization method'' to suggest  charging station locations in high-demand regions. The method samples routes from a route choice set and optimally locates at least one charging station along each  route. Through iterative resampling and optimal allocation of charging stations, the method identifies the potential recharging demand in a location or a region. We demonstrate the method's applicability to a transportation network of the southern part of Sweden. The results show that the proposed method is capable to suggest locations and geographical regions where the recharging demand is potentially high. 

Ort, förlag, år, upplaga, sidor
Elsevier, 2024. Vol. 238, s. 65-72
Serie
Procedia Computer Science, ISSN 1877-0509
Nyckelord [en]
Allocation Strategy, Charging Station, Electric Vehicle, Recharging Demand
Nationell ämneskategori
Transportteknik och logistik
Forskningsämne
Systemteknik
Identifikatorer
URN: urn:nbn:se:bth-26715DOI: 10.1016/j.procs.2024.05.197Scopus ID: 2-s2.0-85199527923OAI: oai:DiVA.org:bth-26715DiVA, id: diva2:1883509
Konferens
15th International Conference on Ambient Systems, Networks and Technologies (ANT), Hasselt, Belgium, April 23-25, 2024
Tillgänglig från: 2024-07-10 Skapad: 2024-07-10 Senast uppdaterad: 2024-09-25Bibliografiskt granskad
Ingår i avhandling
1. Data-Driven Modeling of Transportation Systems: Methodological Approaches and Real World Applications
Öppna denna publikation i ny flik eller fönster >>Data-Driven Modeling of Transportation Systems: Methodological Approaches and Real World Applications
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Traffic analysis is vital for enhancing the performance of transportation systems, where continuous evaluation of traffic states helps responsible road authorities detect and address issues. High-quality traffic data is key to analysis, as it aids in planning and investments. Traditionally, traffic data collection has been costly and limited. Nowadays, connected vehicles and mobile phones have transformed this process, enabling traffic data collection across large geographic regions without the need for dedicated measurement devices. The availability of large-scale and detailed traffic data allows for in-depth analysis using mathematical models. This thesis develops models to utilize available traffic data for transportation system improvements, aiming to enhance traffic conditions and road user experience. It utilizes data from link flows and travel times, applying models over large geographic areas. The thesis addresses transportation engineering issues through data-driven methods. The thesis proposes two methods for allocating electric vehicle charging stations using optimization and route sampling techniques. It introduces a new index for assessing travel time reliability. It shows how clustering analysis of descriptive travel time statistics can be used to detect different traffic states. Furthermore, this thesis presents a statistical model to estimate link flow propagation using measured link flow data, analyzing traffic influence across surrounding areas. The thesis also uses traffic simulation, focusing on combining speed cameras and probe vehicles for data collection and developing a model to identify probable routes based on hourly link flows. The thesis results highlight the importance of data-driven models in optimizing transportation systems and improving road user travel experiences.

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2024. s. 232
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 2024:14
Nyckelord
traffic analysis, data-driven models, mathematical models, link flow data, travel time data
Nationell ämneskategori
Transportteknik och logistik
Forskningsämne
Systemteknik
Identifikatorer
urn:nbn:se:bth-26902 (URN)978-91-7295-487-8 (ISBN)
Disputation
2024-11-14, J1630, Valhallavägen 1, Karlskrona, 09:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-09-25 Skapad: 2024-09-11 Senast uppdaterad: 2024-10-14Bibliografiskt granskad

Open Access i DiVA

fulltext(1993 kB)68 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1993 kBChecksumma SHA-512
a11f78c49f28d5ae93041b19ae218927b7f1d9a73f14f3b20e98bb9b67b935b66473f0ed77d326a674eb09c564743b026c00478df9cf4a994ad4c00e9a69ff64
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltextScopus

Person

Fredriksson, HenrikDahl, MattiasLövström, Benny

Sök vidare i DiVA

Av författaren/redaktören
Fredriksson, HenrikDahl, MattiasLövström, Benny
Av organisationen
Institutionen för matematik och naturvetenskap
Transportteknik och logistik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 68 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 377 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf