Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Tree-Based Response Surface Analysis
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.ORCID-id: 0000-0002-3311-2530
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
Engineering Method Development, GKN Aerospace Engine Systems Sweden.
Blekinge Tekniska Högskola, Fakulteten för datavetenskaper, Institutionen för datalogi och datorsystemteknik.
2015 (Engelska)Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Computer-simulated experiments have become a cost effective way for engineers to replace real experiments in the area of product development. However, one single computer-simulated experiment can still take a significant amount of time. Hence, in order to minimize the amount of simulations needed to investigate a certain design space, different approaches within the design of experiments area are used. One of the used approaches is to minimize the time consumption and simulations for design space exploration through response surface modeling. The traditional methods used for this purpose are linear regression, quadratic curve fitting and support vector machines. This paper analyses and compares the performance of four machine learning methods for the regression problem of response surface modeling. The four methods are linear regression, support vector machines, M5P and random forests. Experiments are conducted to compare the performance of tree models (M5P and random forests) with the performance of non-tree models (support vector machines and linear regression) on data that is typical for concept evaluation within the aerospace industry. The main finding is that comprehensible models (the tree models) perform at least as well as or better than traditional black-box models (the non-tree models). The first observation of this study is that engineers understand the functional behavior, and the relationship between inputs and outputs, for the concept selection tasks by using comprehensible models. The second observation is that engineers can also increase their knowledge about design concepts, and they can reduce the time for planning and conducting future experiments.

Ort, förlag, år, upplaga, sidor
Springer, 2015. Vol. 9432, s. 12s. 118-129
Serie
Lecture Notes in Computer Science, ISSN 0302-9743 ; 9432
Nyckelord [en]
Machine learning, Regression, Surrogate model, Response surface model
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:bth-11442DOI: 10.1007/978-3-319-27926-8_11ISBN: 978-3-319-27925-1 (tryckt)OAI: oai:DiVA.org:bth-11442DiVA, id: diva2:895539
Konferens
The International Workshop on Machine learning, Optimization and big Data (MOD 2015), Taormina - Sicily, Italy
Ingår i projekt
Model Driven Development and Decision Support – MD3S, KK-stiftelsen
Forskningsfinansiär
KK-stiftelsenTillgänglig från: 2016-01-19 Skapad: 2016-01-19 Senast uppdaterad: 2021-08-20Bibliografiskt granskad
Ingår i avhandling
1. Tree Models for Design Space Exploration in Aerospace Engineering
Öppna denna publikation i ny flik eller fönster >>Tree Models for Design Space Exploration in Aerospace Engineering
2019 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A crucial issue in the design of aircraft components is the evaluation of a larger number of potential design alternatives. This evaluation involves too expensive procedures, consequently, it slows down the search for optimal design samples. As a result, scarce or small number of design samples with high dimensional parameter space and high non-linearity pose issues in learning of surrogate models. Furthermore, surrogate models have more issues in handling qualitative data (discrete) than in handling quantitative data (continuous). These issues bring the need for investigations of methods of surrogate modelling for the most effective use of available data. 

 The thesis goal is to support engineers in the early design phase of development of new aircraft engines, specifically, a component of the engine known as Turbine Rear Structure (TRS). For this, tree-based approaches are explored for surrogate modelling for the purpose of exploration of larger search spaces and for speeding up the evaluations of design alternatives. First, we have investigated the performance of tree models on the design concepts of TRS. Second, we have presented an approach to explore design space using tree models, Random Forests. This approach includes hyperparameter tuning, extraction of parameters importance and if-then rules from surrogate models for a better understanding of the design problem. With this presented approach, we have shown that the performance of tree models improved by hyperparameter tuning when using design concepts data of TRS. Third, we performed sensitivity analysis to study the thermal variations on TRS and hence support robust design using tree models. Furthermore, the performance of tree models has been evaluated on mathematical linear and non-linear functions. The results of this study have shown that tree models fit well on non-linear functions. Last, we have shown how tree models support integration of value and sustainability parameters data (quantitative and qualitative data) together with TRS design concepts data in order to assess these parameters impact on the product life cycle in the early design phase.

 

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2019. s. 149
Serie
Blekinge Institute of Technology Licentiate Dissertation Series, ISSN 1650-2140 ; 8
Nationell ämneskategori
Datavetenskap (datalogi)
Identifikatorer
urn:nbn:se:bth-17852 (URN)978-91-7295-377-2 (ISBN)
Presentation
2019-06-03, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2019-04-26 Skapad: 2019-04-25 Senast uppdaterad: 2021-01-13Bibliografiskt granskad
2. Predictive Modelling to Support Design and Manufacturing in Aerospace Engineering
Öppna denna publikation i ny flik eller fönster >>Predictive Modelling to Support Design and Manufacturing in Aerospace Engineering
2021 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

A crucial issue in the design of aircraft components is the evaluation of a large number of potential design alternatives.  This evaluation involves too expensive procedures, consequently, it slows down the search for optimal design samples.  As a result, a scarce or small number of design samples with high dimensional parameter space will pose issues in the learning of surrogate models. These issues bring the need to investigate methods for surrogate modelling for the most effective use of available data. Furthermore, during the manufacturing of components, it is crucial to monitor (in-situ process monitoring) the welding process for quality assurance. A large amount of process data is generated from these in-situ monitoring methods, which can be used to build prediction models for defects classification. However, the process data are unstructured, and defects are unknown, which brings the need for investigations to address these issues to build defect classification models. 

 The thesis goal is to support engineers in the early design and manufacturing phases of aircraft engine components via (1) surrogate modelling for the purpose of exploration of larger search spaces and for speeding up the evaluation of design configurations, and (2) defects classification to support in-situ process monitoring to speed up defects' analysis. 

The first part of the thesis focuses on addressing challenges in design data when building surrogate models. For this, the thesis explores, evaluates, and improves tree models for design space exploration. The second part of the thesis focuses on addressing challenges in process data when building defect classification models. For this, the thesis (1) investigates the performance of selected handcrafted feature extraction techniques, (2) proposes an oversampling technique to balance process datasets, and (3) proposes an active learning approach for labelling data. 

Ort, förlag, år, upplaga, sidor
Karlskrona: Blekinge Tekniska Högskola, 2021
Serie
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 7
Nyckelord
surrogate modelling, defects classification, machine learning, aerospace, additive manufacturing
Nationell ämneskategori
Datavetenskap (datalogi)
Forskningsämne
Datavetenskap
Identifikatorer
urn:nbn:se:bth-22033 (URN)978-91-7295-428-1 (ISBN)
Disputation
2021-10-18, Distance/J1630, Blekinge Institute of Technology, Karlskrona, 13:30 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-08-23 Skapad: 2021-08-20 Senast uppdaterad: 2021-11-15Bibliografiskt granskad

Open Access i DiVA

fulltext(860 kB)734 nedladdningar
Filinformation
Filnamn FULLTEXT02.pdfFilstorlek 860 kBChecksumma SHA-512
30a7ebc443fead40ab20ffdc33fdb96f24dc69f70573a36de77fd1d55a8567560f361bb24ab5af686ac04f6fcdc296884750fb010055a9734404d9df906179dd
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltexthttp://link.springer.com/chapter/10.1007/978-3-319-27926-8_11

Person

Dasari, Siva KrishnaLavesson, NiklasPersson, Marie

Sök vidare i DiVA

Av författaren/redaktören
Dasari, Siva KrishnaLavesson, NiklasPersson, Marie
Av organisationen
Institutionen för datalogi och datorsystemteknik
Datavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 734 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 922 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf