Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
FAME: Supporting continuous requirements elicitation by combining user feedback and monitoring
Universitat Politècnica de Catalunya, ESP.
University of Applied Sciences and Arts Northwestem Switzerland, CHE.
Blekinge Institute of Technology, Faculty of Computing, Department of Software Engineering.
Universitat Politècnica de Catalunya, ESP.
Show others and affiliations
2018 (English)In: Proceedings - 2018 IEEE 26th International Requirements Engineering Conference, RE 2018, Institute of Electrical and Electronics Engineers Inc. , 2018, p. 217-227Conference paper, Published paper (Refereed)
Abstract [en]

Context: Software evolution ensures that software systems in use stay up to date and provide value for end-users. However, it is challenging for requirements engineers to continuously elicit needs for systems used by heterogeneous end-users who are out of organisational reach. Objective: We aim at supporting continuous requirements elicitation by combining user feedback and usage monitoring. Online feedback mechanisms enable end-users to remotely communicate problems, experiences, and opinions, while monitoring provides valuable information about runtime events. It is argued that bringing both information sources together can help requirements engineers to understand end-user needs better. Method/Tool: We present FAME, a framework for the combined and simultaneous collection of feedback and monitoring data in web and mobile contexts to support continuous requirements elicitation. In addition to a detailed discussion of our technical solution, we present the first evidence that FAME can be successfully introduced in real-world contexts. Therefore, we deployed FAME in a web application of a German small and medium-sized enterprise (SME) to collect user feedback and usage data. Results/Conclusion: Our results suggest that FAME not only can be successfully used in industrial environments but that bringing feedback and monitoring data together helps the SME to improve their understanding of end-user needs, ultimately supporting continuous requirements elicitation. © 2018 IEEE.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers Inc. , 2018. p. 217-227
Keywords [en]
Data collection, Feedback acquisition, Feedback gathering, Requirements, Requirements elicitation, Software evolution, Usage monitoring, User feedback, User involvement, Human computer interaction, Requirements engineering, Monitoring
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:bth-17412DOI: 10.1109/RE.2018.00030ISI: 000576671200021Scopus ID: 2-s2.0-85056819919ISBN: 9781538674185 (print)OAI: oai:DiVA.org:bth-17412DiVA, id: diva2:1270358
Conference
26th IEEE International Requirements Engineering Conference, RE 2018, Banff, Canada, 20 August 2018 through 24 August 2018
Available from: 2018-12-13 Created: 2018-12-13 Last updated: 2021-01-13Bibliographically approved
In thesis
1. Combining User Feedback and Monitoring Data to Support Evidence-based Software Evolution
Open this publication in new window or tab >>Combining User Feedback and Monitoring Data to Support Evidence-based Software Evolution
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Context. Companies continuously explore their software systems to acquire evidence for software evolution, such as bugs in the system and new functional or quality requirements. So far, managers have made decisions about software evolution based on evidence gathered from interpreting user feedback and monitoring data collected separately from software in use. These evidence-collection processes are usually unmethodical, lack a systematic guide, and have practical issues. This lack of a systematic approach leaves unexploited opportunities for detecting evidence for system evolution. Objective. The main research objective is to improve evidence collection from software in use and guide software practitioners in decision-making about system evolution. Understanding useful approaches to collect user feedback and monitoring data, two important sources of evidence, and combining them are key objectives as well. Method. We proposed a method for gathering evidence from software in use (GESU) using design-science research. We designed the method over three iterations and validated it in the European case studies FI-Start, Supersede, and Wise-IoT. To acquire knowledge for the design, we conducted further research using surveys and systematic mapping methods. Results. The results show that GESU is not only successful in industrial environments but also yields new evidence for software evolution by bringing user feedback and monitoring data together. This combination helps software practitioners improve their understanding of end-user needs and system drawbacks, ultimately supporting continuous requirements elicitation and product evolution. GESU suggests monitoring a software system based on its goals to filter relevant data (i.e., goal-driven monitoring) and gathering user feedback when the system requests feedback about the software in use (i.e., system-triggered user feedback). The system identifies interesting situations of system use and issues automated requests for user feedback to interpret the evidence from user perspectives. We justified using goal-driven monitoring and system-triggered user feedback with complementary findings of the thesis. That showed the goals and characteristics of software systems constrain monitoring data. We thus narrowed the monitoring and observational focus on data aligned with goals instead of a massive amount of potentially useless data. Finally, we found that requesting feedback from users with a simple feedback form is a useful approach for motivating users to provide feedback. Conclusion. Combining user feedback and monitoring data is helpful to acquire insights into the success of a software system and guide decision-making regarding its evolution. This work can be extended in the future by implementing an adaptive system for gathering evidence from combined user feedback and monitoring data

Place, publisher, year, edition, pages
Karlskrona: Blekinge Tekniska Högskola, 2020
Series
Blekinge Institute of Technology Doctoral Dissertation Series, ISSN 1653-2090 ; 4
Keywords
User feedback, Monitoring data, Evidence-based software engineering, Software evolution
National Category
Software Engineering
Research subject
Software Engineering
Identifiers
urn:nbn:se:bth-19397 (URN)978-91-7295-402-1 (ISBN)
Supervisors
Available from: 2020-04-30 Created: 2020-04-29 Last updated: 2020-12-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Fotrousi, Farnaz

Search in DiVA

By author/editor
Fotrousi, Farnaz
By organisation
Department of Software Engineering
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 173 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf